Suppr超能文献

结合MRI特征的乳腺癌分子亚型分类器。

Breast cancer molecular subtype classifier that incorporates MRI features.

作者信息

Sutton Elizabeth J, Dashevsky Brittany Z, Oh Jung Hun, Veeraraghavan Harini, Apte Aditya P, Thakur Sunitha B, Morris Elizabeth A, Deasy Joseph O

机构信息

Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.

Weill Cornell Medical College, Cornell University, New York, New York, USA.

出版信息

J Magn Reson Imaging. 2016 Jul;44(1):122-9. doi: 10.1002/jmri.25119. Epub 2016 Jan 12.

Abstract

PURPOSE

To use features extracted from magnetic resonance (MR) images and a machine-learning method to assist in differentiating breast cancer molecular subtypes.

MATERIALS AND METHODS

This retrospective Health Insurance Portability and Accountability Act (HIPAA)-compliant study received Institutional Review Board (IRB) approval. We identified 178 breast cancer patients between 2006-2011 with: 1) ERPR + (n = 95, 53.4%), ERPR-/HER2 + (n = 35, 19.6%), or triple negative (TN, n = 48, 27.0%) invasive ductal carcinoma (IDC), and 2) preoperative breast MRI at 1.5T or 3.0T. Shape, texture, and histogram-based features were extracted from each tumor contoured on pre- and three postcontrast MR images using in-house software. Clinical and pathologic features were also collected. Machine-learning-based (support vector machines) models were used to identify significant imaging features and to build models that predict IDC subtype. Leave-one-out cross-validation (LOOCV) was used to avoid model overfitting. Statistical significance was determined using the Kruskal-Wallis test.

RESULTS

Each support vector machine fit in the LOOCV process generated a model with varying features. Eleven out of the top 20 ranked features were significantly different between IDC subtypes with P < 0.05. When the top nine pathologic and imaging features were incorporated, the predictive model distinguished IDC subtypes with an overall accuracy on LOOCV of 83.4%. The combined pathologic and imaging model's accuracy for each subtype was 89.2% (ERPR+), 63.6% (ERPR-/HER2+), and 82.5% (TN). When only the top nine imaging features were incorporated, the predictive model distinguished IDC subtypes with an overall accuracy on LOOCV of 71.2%. The combined pathologic and imaging model's accuracy for each subtype was 69.9% (ERPR+), 62.9% (ERPR-/HER2+), and 81.0% (TN).

CONCLUSION

We developed a machine-learning-based predictive model using features extracted from MRI that can distinguish IDC subtypes with significant predictive power. J. Magn. Reson. Imaging 2016;44:122-129.

摘要

目的

利用从磁共振(MR)图像中提取的特征和机器学习方法辅助鉴别乳腺癌分子亚型。

材料与方法

这项符合《健康保险流通与责任法案》(HIPAA)的回顾性研究获得了机构审查委员会(IRB)的批准。我们纳入了2006年至2011年间的178例乳腺癌患者,这些患者患有:1)雌激素受体/孕激素受体阳性(ERPR+,n = 95,53.4%)、雌激素受体/孕激素受体阴性/人表皮生长因子受体2阳性(ERPR-/HER2+,n = 35,19.6%)或三阴性(TN,n = 48,27.0%)浸润性导管癌(IDC),以及2)术前1.5T或3.0T乳腺MRI检查。使用内部软件从在对比剂注射前及注射后三张MR图像上勾勒出的每个肿瘤中提取形状、纹理和基于直方图的特征。还收集了临床和病理特征。基于机器学习(支持向量机)的模型用于识别重要的影像特征并构建预测IDC亚型的模型。采用留一法交叉验证(LOOCV)以避免模型过度拟合。使用Kruskal-Wallis检验确定统计学意义。

结果

在LOOCV过程中,每个支持向量机拟合生成了具有不同特征的模型。在前20个排名特征中,有11个在IDC亚型之间存在显著差异,P < 0.05。当纳入前九个病理和影像特征时,预测模型在LOOCV上鉴别IDC亚型的总体准确率为83.4%。联合病理和影像模型对各亚型的准确率分别为89.2%(ERPR+)、63.6%(ERPR-/HER2+)和82.5%(TN)。当仅纳入前九个影像特征时,预测模型在LOOCV上鉴别IDC亚型的总体准确率为71.2%。联合病理和影像模型对各亚型的准确率分别为69.9%(ERPR+)、62.9%(ERPR-/HER2+)和81.0%(TN)。

结论

我们利用从MRI中提取的特征开发了一种基于机器学习的预测模型,该模型能够以显著的预测能力鉴别IDC亚型。《磁共振成像杂志》2016年;44:122 - 129。

相似文献

1
Breast cancer molecular subtype classifier that incorporates MRI features.
J Magn Reson Imaging. 2016 Jul;44(1):122-9. doi: 10.1002/jmri.25119. Epub 2016 Jan 12.
3
Breast cancer subtype intertumor heterogeneity: MRI-based features predict results of a genomic assay.
J Magn Reson Imaging. 2015 Nov;42(5):1398-406. doi: 10.1002/jmri.24890. Epub 2015 Apr 7.
4
Quantification of breast tumor heterogeneity for ER status, HER2 status, and TN molecular subtype evaluation on DCE-MRI.
Magn Reson Imaging. 2016 Jul;34(6):809-819. doi: 10.1016/j.mri.2016.03.001. Epub 2016 Mar 8.
6
Is there different correlation with prognostic factors between "non-mass" and "mass" type invasive ductal breast cancers?
Eur J Radiol. 2013 Sep;82(9):1404-9. doi: 10.1016/j.ejrad.2013.03.006. Epub 2013 Mar 27.
7
Applying a new quantitative global breast MRI feature analysis scheme to assess tumor response to chemotherapy.
J Magn Reson Imaging. 2016 Nov;44(5):1099-1106. doi: 10.1002/jmri.25276. Epub 2016 Apr 15.

引用本文的文献

4
Radiomics Integration of Mammography and DCE-MRI for Predicting Molecular Subtypes in Breast Cancer Patients.
Breast Cancer (Dove Med Press). 2025 Feb 18;17:187-200. doi: 10.2147/BCTT.S488200. eCollection 2025.
5
Radiomics signatures for predicting the Ki-67 level and HER-2 status based on bone metastasis from primary breast cancer.
Front Cell Dev Biol. 2024 Jan 8;11:1220320. doi: 10.3389/fcell.2023.1220320. eCollection 2023.
8
A Two-Step Feature Selection Radiomic Approach to Predict Molecular Outcomes in Breast Cancer.
Sensors (Basel). 2023 Jan 31;23(3):1552. doi: 10.3390/s23031552.
9
Classifying Breast Cancer Metastasis Based on Imaging of Tumor Primary and Tumor Biology.
Diagnostics (Basel). 2023 Jan 25;13(3):437. doi: 10.3390/diagnostics13030437.

本文引用的文献

1
Magnetic resonance imaging texture analysis classification of primary breast cancer.
Eur Radiol. 2016 Feb;26(2):322-30. doi: 10.1007/s00330-015-3845-6. Epub 2015 Jun 12.
2
Breast cancer subtype intertumor heterogeneity: MRI-based features predict results of a genomic assay.
J Magn Reson Imaging. 2015 Nov;42(5):1398-406. doi: 10.1002/jmri.24890. Epub 2015 Apr 7.
3
Radiogenomic analysis of breast cancer: luminal B molecular subtype is associated with enhancement dynamics at MR imaging.
Radiology. 2014 Nov;273(2):365-72. doi: 10.1148/radiol.14132641. Epub 2014 Jul 15.
7
Computer-aided diagnosis of mass-like lesion in breast MRI: differential analysis of the 3-D morphology between benign and malignant tumors.
Comput Methods Programs Biomed. 2013 Dec;112(3):508-17. doi: 10.1016/j.cmpb.2013.08.016. Epub 2013 Sep 7.
8
3D lacunarity in multifractal analysis of breast tumor lesions in dynamic contrast-enhanced magnetic resonance imaging.
IEEE Trans Image Process. 2013 Nov;22(11):4422-35. doi: 10.1109/TIP.2013.2273669.
9
MR imaging features of triple-negative breast cancers.
Breast J. 2013 Nov-Dec;19(6):643-9. doi: 10.1111/tbj.12182. Epub 2013 Sep 9.
10
Correlation between imaging and molecular classification of breast cancers.
Diagn Interv Imaging. 2013 Nov;94(11):1069-80. doi: 10.1016/j.diii.2013.04.010. Epub 2013 Jul 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验