Department of Radiology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No. 55, 4th Section of South Ren-Min Road, Chengdu, 610041, China.
Sci Rep. 2024 Aug 14;14(1):18900. doi: 10.1038/s41598-024-69725-5.
To investigate whether peritumoral edema (PE) could enhance deep learning radiomic (DLR) model in predicting axillary lymph node metastasis (ALNM) burden in breast cancer. Invasive breast cancer patients with preoperative MRI were retrospectively enrolled and categorized into low (< 2 lymph nodes involved (LNs+)) and high (≥ 2 LNs+) burden groups based on surgical pathology. PE was evaluated on T2WI, and intra- and peri-tumoral radiomic features were extracted from MRI-visible tumors in DCE-MRI. Deep learning models were developed for LN burden prediction in the training cohort and validated in an independent cohort. The incremental value of PE was evaluated through receiver operating characteristic (ROC) analysis, confirming the improvement in the area under the curve (AUC) using the Delong test. This was complemented by net reclassification improvement (NRI) and integrated discrimination improvement (IDI) metrics. The deep learning combined model, incorporating PE with selected radiomic features, demonstrated significantly higher AUC values compared to the MRI model and the DLR model in the training cohort (n = 177) (AUC: 0.953 vs. 0.849 and 0.867, p < 0.05) and the validation cohort (n = 111) (AUC: 0.963 vs. 0.883 and 0.882, p < 0.05). The complementary analysis demonstrated that PE significantly enhances the prediction performance of the DLR model (Categorical NRI: 0.551, p < 0.001; IDI = 0.343, p < 0.001). These findings were confirmed in the validation cohort (Categorical NRI: 0.539, p < 0.001; IDI = 0.387, p < 0.001). PE improved preoperative ALNM burden prediction of DLR model, facilitating personalized axillary management in breast cancer patients.
为了研究瘤周水肿(PE)是否可以增强深度学习放射组学(DLR)模型在预测乳腺癌腋窝淋巴结转移(ALNM)负担中的作用。回顾性纳入了术前 MRI 检查的浸润性乳腺癌患者,并根据手术病理结果将其分为低(<2 个淋巴结受累(LNs+))和高(≥2 LNs+)负荷组。在 T2WI 上评估 PE,并从 DCE-MRI 中 MRI 可见肿瘤中提取肿瘤内和肿瘤周围的放射组学特征。在训练队列中开发了用于预测 LN 负担的深度学习模型,并在独立队列中进行了验证。通过接受者操作特征(ROC)分析评估 PE 的增量价值,使用 Delong 检验确认曲线下面积(AUC)的提高。通过净重新分类改善(NRI)和综合鉴别改善(IDI)指标进行补充。在训练队列(n=177)和验证队列(n=111)中,与 MRI 模型和 DLR 模型相比,将 PE 与选定的放射组学特征相结合的深度学习联合模型的 AUC 值显著更高(AUC:0.953 比 0.849 和 0.867,p<0.05)。补充分析表明,PE 显著增强了 DLR 模型的预测性能(分类 NRI:0.551,p<0.001;IDI=0.343,p<0.001)。这些发现在验证队列中得到了证实(分类 NRI:0.539,p<0.001;IDI=0.387,p<0.001)。PE 改善了 DLR 模型对术前 ALNM 负担的预测,有助于对乳腺癌患者进行个体化腋窝管理。