Suppr超能文献

曲率感知MARCKS-ED肽以立体独立的方式与膜结合。

Curvature sensing MARCKS-ED peptides bind to membranes in a stereo-independent manner.

作者信息

Yan Lei, de Jesus Armando Jerome, Tamura Ryo, Li Victoria, Cheng Kui, Yin Hang

机构信息

Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing, China, 100082.

Department of Chemistry and Biochemistry, the BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80309-0596, USA.

出版信息

J Pept Sci. 2015 Jul;21(7):577-585. doi: 10.1002/psc.2772. Epub 2015 Apr 8.

Abstract

Membrane curvature and lipid composition plays a critical role in interchanging of matter and energy in cells. Peptide curvature sensors are known to activate signaling pathways and promote molecular transport across cell membranes. Recently, the 25-mer MARCKS-ED peptide, which is derived from the effector domain of the myristoylated alanine-rich C kinase substrate protein, has been reported to selectively recognize highly curved membrane surfaces. Our previous studies indicated that the naturally occurring L-MARCKS-ED peptide could simultaneously detect both phosphatidylserine and curvature. Here, we demonstrate that D-MARCKS-ED, composed by unnatural D-amino acids, has the same activities as its enantiomer, L-MARCKS-ED, as a curvature and lipid sensor. An atomistic molecular dynamics simulation suggests that D-MARCKS-ED may change from linear to a boat conformation upon binding to the membrane. Comparable enhancement of fluorescence intensity was observed between D- and L-MARCKS-ED peptides, indicating similar binding affinities. Meanwhile, circular dichroism spectra of D- and L-MARCKS-ED are almost symmetrical both in the presence and absence of liposomes. These results suggest similar behavior of artificial D- and natural L-MARCKS-ED peptides when binding to curved membranes. Our studies may contribute to further understanding of how MARCKS-ED senses membrane curvature as well as provide a new direction to develop novel membrane curvature probes.

摘要

膜曲率和脂质组成在细胞内物质和能量的交换中起着关键作用。已知肽曲率传感器可激活信号通路并促进分子跨细胞膜运输。最近,据报道,源自肉豆蔻酰化富含丙氨酸的C激酶底物蛋白效应域的25聚体MARCKS-ED肽能选择性识别高度弯曲的膜表面。我们之前的研究表明,天然存在的L-MARCKS-ED肽能同时检测磷脂酰丝氨酸和曲率。在此,我们证明由非天然D-氨基酸组成的D-MARCKS-ED作为曲率和脂质传感器,具有与其对映体L-MARCKS-ED相同的活性。原子分子动力学模拟表明,D-MARCKS-ED与膜结合后可能从线性构象转变为船型构象。在D-MARCKS-ED和L-MARCKS-ED肽之间观察到了相当的荧光强度增强,表明它们具有相似的结合亲和力。同时,无论有无脂质体,D-MARCKS-ED和L-MARCKS-ED的圆二色光谱几乎都是对称的。这些结果表明,人工合成的D-MARCKS-ED肽和天然的L-MARCKS-ED肽在与弯曲膜结合时表现出相似的行为。我们的研究可能有助于进一步理解MARCKS-ED如何感知膜曲率,并为开发新型膜曲率探针提供新的方向。

相似文献

1
Curvature sensing MARCKS-ED peptides bind to membranes in a stereo-independent manner.
J Pept Sci. 2015 Jul;21(7):577-585. doi: 10.1002/psc.2772. Epub 2015 Apr 8.
2
Determinants of Curvature-Sensing Behavior for MARCKS-Fragment Peptides.
Biophys J. 2016 May 10;110(9):1980-92. doi: 10.1016/j.bpj.2016.04.007.
3
MARCKS-ED peptide as a curvature and lipid sensor.
ACS Chem Biol. 2013 Jan 18;8(1):218-25. doi: 10.1021/cb300429e. Epub 2012 Oct 29.
4
Biophysical investigations with MARCKS-ED: dissecting the molecular mechanism of its curvature sensing behaviors.
Biochim Biophys Acta. 2014 Dec;1838(12):3137-3144. doi: 10.1016/j.bbamem.2014.08.027. Epub 2014 Sep 6.
8
Electrostatic sequestration of PIP2 on phospholipid membranes by basic/aromatic regions of proteins.
Biophys J. 2004 Apr;86(4):2188-207. doi: 10.1016/S0006-3495(04)74278-2.
9
Structural investigation on the adsorption of the MARCKS peptide on anionic lipid monolayers - effects beyond electrostatic.
Chem Phys Lipids. 2011 May;164(4):266-75. doi: 10.1016/j.chemphyslip.2011.02.004. Epub 2011 Mar 2.

引用本文的文献

1
Summary of Prof. Yin's CSEMV-EVCNA award lecture 2021.
Extracell Vesicles Circ Nucl Acids. 2022 Apr 13;3(2):87-92. doi: 10.20517/evcna.2022.16. eCollection 2022.
3
Binding-induced lipid domains: Peptide-membrane interactions with PIP and PS.
Biophys J. 2024 Jul 16;123(14):2001-2011. doi: 10.1016/j.bpj.2023.12.019. Epub 2023 Dec 23.
4
Peptides derived from MARCKS block coagulation complex assembly on phosphatidylserine.
Sci Rep. 2017 Jun 27;7(1):4275. doi: 10.1038/s41598-017-04494-y.
5
Determinants of Curvature-Sensing Behavior for MARCKS-Fragment Peptides.
Biophys J. 2016 May 10;110(9):1980-92. doi: 10.1016/j.bpj.2016.04.007.
6
Lipid-Targeting Peptide Probes for Extracellular Vesicles.
J Cell Physiol. 2016 Nov;231(11):2327-32. doi: 10.1002/jcp.25354. Epub 2016 Mar 9.
7
Drugging Membrane Protein Interactions.
Annu Rev Biomed Eng. 2016 Jul 11;18:51-76. doi: 10.1146/annurev-bioeng-092115-025322. Epub 2016 Feb 5.

本文引用的文献

2
Biophysical investigations with MARCKS-ED: dissecting the molecular mechanism of its curvature sensing behaviors.
Biochim Biophys Acta. 2014 Dec;1838(12):3137-3144. doi: 10.1016/j.bbamem.2014.08.027. Epub 2014 Sep 6.
4
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
5
The role of spontaneous lipid curvature in the interaction of interfacially active peptides with membranes.
Biochim Biophys Acta. 2014 Sep;1838(9):2250-9. doi: 10.1016/j.bbamem.2014.05.013. Epub 2014 May 20.
6
Exosomes and microvesicles: identification and targeting by particle size and lipid chemical probes.
Chembiochem. 2014 May 5;15(7):923-8. doi: 10.1002/cbic.201400043. Epub 2014 Apr 16.
7
Membrane shape modulates transmembrane protein distribution.
Dev Cell. 2014 Jan 27;28(2):212-8. doi: 10.1016/j.devcel.2013.12.012.
8
The carrying pigeons of the cell: exosomes and their role in infectious diseases caused by human pathogens.
Pathog Dis. 2014 Jul;71(2):109-20. doi: 10.1111/2049-632X.12135. Epub 2014 Feb 24.
9
Emerging concepts on the role of exosomes in lipid metabolic diseases.
Biochimie. 2014 Jan;96:67-74. doi: 10.1016/j.biochi.2013.06.016. Epub 2013 Jul 1.
10
Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review.
Cancer Metastasis Rev. 2013 Dec;32(3-4):623-42. doi: 10.1007/s10555-013-9441-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验