Suppr超能文献

用MARCKS-ED进行生物物理研究:剖析其曲率传感行为的分子机制。

Biophysical investigations with MARCKS-ED: dissecting the molecular mechanism of its curvature sensing behaviors.

作者信息

Morton Leslie A, Tamura Ryo, de Jesus Armando J, Espinoza Arianna, Yin Hang

机构信息

Department of Chemistry & Biochemistry and the BioFrontiers Institute, University of Colorado, Boulder, Colorado, 80309-0596, the United States of America.

出版信息

Biochim Biophys Acta. 2014 Dec;1838(12):3137-3144. doi: 10.1016/j.bbamem.2014.08.027. Epub 2014 Sep 6.

Abstract

Curved membranes are a common and important attribute in cells. Protein and peptide curvature sensors are known to activate signaling pathways, initiate vesicle budding, trigger membrane fusion, and facilitate molecular transport across cell membranes. Nonetheless, there is little understanding how these proteins and peptides achieve preferential binding of different membrane curvatures. The current study is to elucidate specific factors required for curvature sensing. As a model system, we employed a recently identified peptide curvature sensor, MARCKS-ED, derived from the effector domain of the myristoylated alanine-rich C kinase substrate protein, for these biophysical investigations. An atomistic molecular dynamics (MD) simulation suggested an important role played by the insertion of the Phe residues within MARCKS-ED. To test these observations from our computational simulations, we performed electron paramagnetic resonance (EPR) studies to determine the insertion depth of MARCKS-ED into differently curved membrane bilayers. Next, studies with varied lipid compositions revealed their influence on curvature sensing by MARCKS-ED, suggesting contributions from membrane fluidity, rigidity, as well as various lipid structures. Finally, we demonstrated that the curvature sensing by MARCKS-ED is configuration independent. In summary, our studies have shed further light to the understanding of how MARCKS-ED differentiates between membrane curvatures, which may be generally applicable to protein curvature sensing behavior.

摘要

弯曲膜是细胞中常见且重要的特征。已知蛋白质和肽曲率传感器可激活信号通路、引发囊泡出芽、触发膜融合并促进分子跨细胞膜运输。然而,对于这些蛋白质和肽如何实现对不同膜曲率的优先结合却知之甚少。当前的研究旨在阐明曲率传感所需的特定因素。作为一个模型系统,我们采用了一种最近鉴定出的肽曲率传感器MARCKS - ED,它源自富含肉豆蔻酰化丙氨酸的蛋白激酶C底物蛋白的效应结构域,用于这些生物物理研究。原子分子动力学(MD)模拟表明MARCKS - ED内苯丙氨酸残基的插入起着重要作用。为了验证我们计算模拟中的这些观察结果,我们进行了电子顺磁共振(EPR)研究,以确定MARCKS - ED插入不同曲率膜双层的深度。接下来,对不同脂质组成的研究揭示了它们对MARCKS - ED曲率传感的影响,表明膜流动性、刚性以及各种脂质结构都有贡献。最后,我们证明了MARCKS - ED的曲率传感与构型无关。总之,我们的研究进一步阐明了MARCKS - ED如何区分膜曲率,这可能普遍适用于蛋白质曲率传感行为。

相似文献

1
Biophysical investigations with MARCKS-ED: dissecting the molecular mechanism of its curvature sensing behaviors.
Biochim Biophys Acta. 2014 Dec;1838(12):3137-3144. doi: 10.1016/j.bbamem.2014.08.027. Epub 2014 Sep 6.
2
Determinants of Curvature-Sensing Behavior for MARCKS-Fragment Peptides.
Biophys J. 2016 May 10;110(9):1980-92. doi: 10.1016/j.bpj.2016.04.007.
3
Curvature sensing MARCKS-ED peptides bind to membranes in a stereo-independent manner.
J Pept Sci. 2015 Jul;21(7):577-585. doi: 10.1002/psc.2772. Epub 2015 Apr 8.
4
MARCKS-ED peptide as a curvature and lipid sensor.
ACS Chem Biol. 2013 Jan 18;8(1):218-25. doi: 10.1021/cb300429e. Epub 2012 Oct 29.
6
Inhibition of native and recombinant nicotinic acetylcholine receptors by the myristoylated alanine-rich C kinase substrate peptide.
J Pharmacol Exp Ther. 2008 Dec;327(3):884-90. doi: 10.1124/jpet.108.144758. Epub 2008 Sep 23.
10

引用本文的文献

2
Biological membranes in EV biogenesis, stability, uptake, and cargo transfer: an ISEV position paper arising from the ISEV membranes and EVs workshop.
J Extracell Vesicles. 2019 Nov 8;8(1):1684862. doi: 10.1080/20013078.2019.1684862. eCollection 2019.
3
Intrinsically disordered proteins in synaptic vesicle trafficking and release.
J Biol Chem. 2019 Mar 8;294(10):3325-3342. doi: 10.1074/jbc.REV118.006493. Epub 2019 Jan 30.
4
Peptides derived from MARCKS block coagulation complex assembly on phosphatidylserine.
Sci Rep. 2017 Jun 27;7(1):4275. doi: 10.1038/s41598-017-04494-y.
5
Phosphoinositides and Membrane Targeting in Cell Polarity.
Cold Spring Harb Perspect Biol. 2018 Feb 1;10(2):a027938. doi: 10.1101/cshperspect.a027938.
6
Determinants of Curvature-Sensing Behavior for MARCKS-Fragment Peptides.
Biophys J. 2016 May 10;110(9):1980-92. doi: 10.1016/j.bpj.2016.04.007.
7
Lipid-Targeting Peptide Probes for Extracellular Vesicles.
J Cell Physiol. 2016 Nov;231(11):2327-32. doi: 10.1002/jcp.25354. Epub 2016 Mar 9.
8
Drugging Membrane Protein Interactions.
Annu Rev Biomed Eng. 2016 Jul 11;18:51-76. doi: 10.1146/annurev-bioeng-092115-025322. Epub 2016 Feb 5.
9
X MARCKS the spot: myristoylated alanine-rich C kinase substrate in neuronal function and disease.
Front Cell Neurosci. 2015 Oct 13;9:407. doi: 10.3389/fncel.2015.00407. eCollection 2015.
10
Curvature sensing MARCKS-ED peptides bind to membranes in a stereo-independent manner.
J Pept Sci. 2015 Jul;21(7):577-585. doi: 10.1002/psc.2772. Epub 2015 Apr 8.

本文引用的文献

2
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
3
MARCKS-ED peptide as a curvature and lipid sensor.
ACS Chem Biol. 2013 Jan 18;8(1):218-25. doi: 10.1021/cb300429e. Epub 2012 Oct 29.
4
The determinants of hydrophobic mismatch response for transmembrane helices.
Biochim Biophys Acta. 2013 Feb;1828(2):851-63. doi: 10.1016/j.bbamem.2012.09.012. Epub 2012 Sep 17.
6
Mechanisms of membrane curvature sensing.
Annu Rev Biochem. 2011;80:101-23. doi: 10.1146/annurev-biochem-052809-155121.
7
Thermodynamics and mechanics of membrane curvature generation and sensing by proteins and lipids.
Annu Rev Phys Chem. 2011;62:483-506. doi: 10.1146/annurev.physchem.012809.103450.
8
Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types.
J Phys Chem B. 2010 Jun 17;114(23):7830-43. doi: 10.1021/jp101759q.
9
HIV-1 Nef membrane association depends on charge, curvature, composition and sequence.
Nat Chem Biol. 2010 Jan;6(1):46-53. doi: 10.1038/nchembio.268. Epub 2009 Nov 22.
10
Membrane-bending mechanism of amphiphysin N-BAR domains.
Biophys J. 2009 Nov 18;97(10):2727-35. doi: 10.1016/j.bpj.2009.08.051.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验