Elbasha Elamin H, Chhatwal Jagpreet
Health Economic Statistics, Merck Research Laboratories, Merck & Co. Inc., UG1C-60, PO Box 1000, North Wales, PA, 19454-1099, USA,
Pharmacoeconomics. 2015 Aug;33(8):857-65. doi: 10.1007/s40273-015-0273-z.
Previous research using numerical methods suggested that use of a cohort-based model instead of an individual-based model can result in significant heterogeneity bias. However, the direction of the bias is not known a priori. We characterized mathematically the conditions that lead to upward or downward bias.
We used a standard three-state disease progression model to evaluate the cost effectiveness of a hypothetical intervention. We solved the model analytically and derived expressions for life expectancy, discounted quality-adjusted life years (QALYs), discounted lifetime costs and incremental net monetary benefits (INMB). An outcome was calculated using the mean of the input under the cohort-based approach and the whole input distribution for all persons under the individual-based approach. We investigated the impact of heterogeneity on outcomes by varying one parameter at a time while keeping all others constant. We evaluated the curvature of outcome functions and used Jensen's inequality to determine the direction of the bias.
Both life expectancy and QALYs were underestimated by the cohort-based approach. If there was heterogeneity only in disease progression, total costs were overestimated, whereas QALYs gained, incremental costs and INMB were under- or overestimated, depending on the progression rate. INMB was underestimated when only efficacy was heterogeneous. Both approaches yielded the same outcome when the heterogeneity was only in cost or utilities.
A cohort-based approach that does not adjust for heterogeneity underestimates life expectancy and may underestimate or overestimate other outcomes. Characterizing the bias is useful for comparative assessment of models and informing decision making.
先前使用数值方法的研究表明,使用基于队列的模型而非基于个体的模型可能会导致显著的异质性偏差。然而,偏差的方向事先并不清楚。我们从数学上描述了导致偏差向上或向下的条件。
我们使用一个标准的三状态疾病进展模型来评估一种假设干预措施的成本效益。我们对该模型进行了解析求解,并推导了预期寿命、贴现质量调整生命年(QALY)、贴现终身成本和增量净货币效益(INMB)的表达式。在基于队列的方法中,结果是使用输入的均值计算得出的;而在基于个体的方法中,结果是使用所有人的整个输入分布计算得出的。我们通过每次改变一个参数同时保持其他参数不变来研究异质性对结果的影响。我们评估了结果函数的曲率,并使用詹森不等式来确定偏差的方向。
基于队列的方法低估了预期寿命和QALY。如果仅在疾病进展方面存在异质性,总成本会被高估,而获得的QALY、增量成本和INMB则会被低估或高估,这取决于进展率。当仅疗效存在异质性时,INMB会被低估。当异质性仅存在于成本或效用方面时,两种方法得出的结果相同。
不针对异质性进行调整的基于队列的方法会低估预期寿命,并且可能低估或高估其他结果。描述偏差对于模型的比较评估和决策制定具有指导作用。