Suppr超能文献

周期内校正的神话与误解:建模者和决策者指南

Myths and Misconceptions of Within-Cycle Correction: A Guide for Modelers and Decision Makers.

作者信息

Elbasha Elamin H, Chhatwal Jagpreet

机构信息

Merck & Co. Inc., Kenilworth, NJ, USA.

Merck Research Laboratories, Merck & Co., Inc., UG1C-60, PO Box 1000, North Wales, PA, 19454-1099, USA.

出版信息

Pharmacoeconomics. 2016 Jan;34(1):13-22. doi: 10.1007/s40273-015-0337-0.

Abstract

Commonly used decision-analytic models for cost-effectiveness analysis simulate time in discrete steps. Use of discrete-time steps can introduce errors when calculating cumulative outcomes such as costs and quality-adjusted life-years. There are a number of myths or misconceptions concerning how to correct these errors and the need to do so. This tutorial shows that, by neglecting to apply within-cycle (sometimes referred to as half-cycle or continuity) correction methods to the results of discrete-time models, the analyst may arrive at the wrong recommendation regarding the use of a technology. We show that the standard half-cycle correction method results in the same cumulative outcome as the trapezoidal rule and life-table method. However, the trapezoidal rule has the added advantage of applying the correction at each cycle, not just the initial and final cycle. We further show that the Simpson's 1/3 rule is more accurate than the trapezoidal rule. We recommend using the Simpson's 1/3 rule in the base-case analysis and, if needed, showing the results with other methods in the sensitivity analysis. We also demonstrate that both the trapezoidal and Simpson's rules can easily be implemented in commonly used software.

摘要

成本效益分析中常用的决策分析模型以离散步骤模拟时间。在计算累积结果(如成本和质量调整生命年)时,使用离散时间步长可能会引入误差。关于如何纠正这些误差以及是否有必要这样做,存在一些误解或错误观念。本教程表明,由于在离散时间模型的结果中忽略应用周期内(有时称为半周期或连续性)校正方法,分析人员可能会在技术使用方面得出错误的建议。我们表明,标准的半周期校正方法与梯形法则和生命表法产生相同的累积结果。然而,梯形法则的额外优势在于在每个周期应用校正,而不仅仅是在初始和最终周期。我们进一步表明,辛普森1/3法则比梯形法则更准确。我们建议在基础案例分析中使用辛普森1/3法则,并在敏感性分析中根据需要用其他方法展示结果。我们还证明,梯形法则和辛普森法则都可以在常用软件中轻松实现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验