Suppr超能文献

通过共价交联揭示牛F-ATP酶膜结构域中亚基的组织方式

Organization of Subunits in the Membrane Domain of the Bovine F-ATPase Revealed by Covalent Cross-linking.

作者信息

Lee Jennifer, Ding ShuJing, Walpole Thomas B, Holding Andrew N, Montgomery Martin G, Fearnley Ian M, Walker John E

机构信息

From the The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, United Kingdom and.

The Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom.

出版信息

J Biol Chem. 2015 May 22;290(21):13308-20. doi: 10.1074/jbc.M115.645283. Epub 2015 Apr 7.

Abstract

The F-ATPase in bovine mitochondria is a membrane-bound complex of about 30 subunits of 18 different kinds. Currently, ∼85% of its structure is known. The enzyme has a membrane extrinsic catalytic domain, and a membrane intrinsic domain where the turning of the enzyme's rotor is generated from the transmembrane proton-motive force. The domains are linked by central and peripheral stalks. The central stalk and a hydrophobic ring of c-subunits in the membrane domain constitute the enzyme's rotor. The external surface of the catalytic domain and membrane subunit a are linked by the peripheral stalk, holding them static relative to the rotor. The membrane domain contains six additional subunits named ATP8, e, f, g, DAPIT (diabetes-associated protein in insulin-sensitive tissues), and 6.8PL (6.8-kDa proteolipid), each with a single predicted transmembrane α-helix, but their orientation and topography are unknown. Mutations in ATP8 uncouple the enzyme and interfere with its assembly, but its roles and the roles of the other five subunits are largely unknown. We have reacted accessible amino groups in the enzyme with bifunctional cross-linking agents and identified the linked residues. Cross-links involving the supernumerary subunits, where the structures are not known, show that the C terminus of ATP8 extends ∼70 Å from the membrane into the peripheral stalk and that the N termini of the other supernumerary subunits are on the same side of the membrane, probably in the mitochondrial matrix. These experiments contribute significantly toward building up a complete structural picture of the F-ATPase.

摘要

牛线粒体中的F-ATP酶是一种由18种不同类型的约30个亚基组成的膜结合复合物。目前,其结构约85%已为人所知。该酶有一个膜外在催化结构域和一个膜内在结构域,酶转子的转动由跨膜质子动力产生。这些结构域通过中央和外周柄相连。中央柄和膜结构域中c亚基的疏水环构成酶的转子。催化结构域的外表面和膜亚基a通过外周柄相连,使它们相对于转子保持静止。膜结构域还包含另外六个亚基,分别命名为ATP8、e、f、g、DAPIT(胰岛素敏感组织中的糖尿病相关蛋白)和6.8PL(6.8 kDa的蛋白脂质),每个亚基都有一个预测的单一跨膜α螺旋,但其方向和拓扑结构尚不清楚。ATP8中的突变会使酶解偶联并干扰其组装,但它以及其他五个亚基的作用在很大程度上仍不清楚。我们用双功能交联剂与该酶中可及的氨基反应,并鉴定了相连的残基。涉及这些结构未知的多余亚基的交联表明,ATP8的C末端从膜延伸约70 Å进入外周柄,其他多余亚基的N末端在膜的同一侧,可能在线粒体基质中。这些实验对构建F-ATP酶的完整结构图像有重要贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de51/4505582/e781903b8a0c/zbc0261517110001.jpg

相似文献

1
Organization of Subunits in the Membrane Domain of the Bovine F-ATPase Revealed by Covalent Cross-linking.
J Biol Chem. 2015 May 22;290(21):13308-20. doi: 10.1074/jbc.M115.645283. Epub 2015 Apr 7.
2
Permeability transition in human mitochondria persists in the absence of peripheral stalk subunits of ATP synthase.
Proc Natl Acad Sci U S A. 2017 Aug 22;114(34):9086-9091. doi: 10.1073/pnas.1711201114. Epub 2017 Aug 7.
4
Assembly of the membrane domain of ATP synthase in human mitochondria.
Proc Natl Acad Sci U S A. 2018 Mar 20;115(12):2988-2993. doi: 10.1073/pnas.1722086115. Epub 2018 Feb 12.
5
Structure of the F1-binding domain of the stator of bovine F1Fo-ATPase and how it binds an alpha-subunit.
J Mol Biol. 2005 Aug 26;351(4):824-38. doi: 10.1016/j.jmb.2005.06.012.
6
Persistence of the mitochondrial permeability transition in the absence of subunit c of human ATP synthase.
Proc Natl Acad Sci U S A. 2017 Mar 28;114(13):3409-3414. doi: 10.1073/pnas.1702357114. Epub 2017 Mar 13.
7
The structure of the central stalk in bovine F(1)-ATPase at 2.4 A resolution.
Nat Struct Biol. 2000 Nov;7(11):1055-61. doi: 10.1038/80981.
8
Assembly of the peripheral stalk of ATP synthase in human mitochondria.
Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29602-29608. doi: 10.1073/pnas.2017987117. Epub 2020 Nov 9.
9
Persistence of the permeability transition pore in human mitochondria devoid of an assembled ATP synthase.
Proc Natl Acad Sci U S A. 2019 Jun 25;116(26):12816-12821. doi: 10.1073/pnas.1904005116. Epub 2019 Jun 18.
10
Structure of ATP synthase from Paracoccus denitrificans determined by X-ray crystallography at 4.0 Å resolution.
Proc Natl Acad Sci U S A. 2015 Oct 27;112(43):13231-6. doi: 10.1073/pnas.1517542112. Epub 2015 Oct 12.

引用本文的文献

1
Deciphering the enigma of RNA editing in the ATP1_alpha subunit of ATP synthase in .
Saudi J Biol Sci. 2023 Jul;30(7):103703. doi: 10.1016/j.sjbs.2023.103703. Epub 2023 Jun 9.
2
Characterization of a highly diverged mitochondrial ATP synthase F subunit in Trypanosoma brucei.
J Biol Chem. 2022 Apr;298(4):101829. doi: 10.1016/j.jbc.2022.101829. Epub 2022 Mar 12.
3
Sequence and structure comparison of ATP synthase F0 subunits 6 and 8 in notothenioid fish.
PLoS One. 2021 Oct 6;16(10):e0245822. doi: 10.1371/journal.pone.0245822. eCollection 2021.
4
Characterizing Endogenous Protein Complexes with Biological Mass Spectrometry.
Chem Rev. 2022 Apr 27;122(8):7386-7414. doi: 10.1021/acs.chemrev.1c00217. Epub 2021 Aug 18.
5
The circ_0004463/miR-380-3p/FOXO1 axis modulates mitochondrial respiration and bladder cancer cell apoptosis.
Cell Cycle. 2020 Dec;19(24):3563-3580. doi: 10.1080/15384101.2020.1852746. Epub 2020 Dec 7.
6
Mitochondrial DNA Mutation Analysis in Breast Cancer: Shifting From Germline Heteroplasmy Toward Homoplasmy in Tumors.
Front Oncol. 2020 Oct 27;10:572954. doi: 10.3389/fonc.2020.572954. eCollection 2020.
7
Structure of the dimeric ATP synthase from bovine mitochondria.
Proc Natl Acad Sci U S A. 2020 Sep 22;117(38):23519-23526. doi: 10.1073/pnas.2013998117. Epub 2020 Sep 8.
8
Mitochondrial F-ATP Synthase and Its Transition into an Energy-Dissipating Molecular Machine.
Oxid Med Cell Longev. 2019 Apr 15;2019:8743257. doi: 10.1155/2019/8743257. eCollection 2019.
10
OSCP subunit of mitochondrial ATP synthase: role in regulation of enzyme function and of its transition to a pore.
Br J Pharmacol. 2019 Nov;176(22):4247-4257. doi: 10.1111/bph.14513. Epub 2018 Nov 28.

本文引用的文献

2
Horizontal membrane-intrinsic α-helices in the stator a-subunit of an F-type ATP synthase.
Nature. 2015 May 14;521(7551):237-40. doi: 10.1038/nature14185. Epub 2015 Feb 23.
4
Interactions of subunits Asa2, Asa4 and Asa7 in the peripheral stalk of the mitochondrial ATP synthase of the chlorophycean alga Polytomella sp.
Biochim Biophys Acta. 2014 Jan;1837(1):1-13. doi: 10.1016/j.bbabio.2013.08.001. Epub 2013 Aug 9.
5
Scalable web services for the PSIPRED Protein Analysis Workbench.
Nucleic Acids Res. 2013 Jul;41(Web Server issue):W349-57. doi: 10.1093/nar/gkt381. Epub 2013 Jun 8.
6
The affinity purification and characterization of ATP synthase complexes from mitochondria.
Open Biol. 2013 Feb 13;3(2):120160. doi: 10.1098/rsob.120160.
7
The ATP synthase: the understood, the uncertain and the unknown.
Biochem Soc Trans. 2013 Feb 1;41(1):1-16. doi: 10.1042/BST20110773.
8
Arrangement of subunits in intact mammalian mitochondrial ATP synthase determined by cryo-EM.
Proc Natl Acad Sci U S A. 2012 Jul 17;109(29):11675-80. doi: 10.1073/pnas.1204935109. Epub 2012 Jul 2.
9
Knockdown of DAPIT (diabetes-associated protein in insulin-sensitive tissue) results in loss of ATP synthase in mitochondria.
J Biol Chem. 2011 Jun 10;286(23):20292-6. doi: 10.1074/jbc.M110.198523. Epub 2011 Feb 23.
10
Andromeda: a peptide search engine integrated into the MaxQuant environment.
J Proteome Res. 2011 Apr 1;10(4):1794-805. doi: 10.1021/pr101065j. Epub 2011 Feb 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验