文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

生物合成银纳米颗粒对幽门螺杆菌、猫幽门螺杆菌以及人肺(L132)细胞和肺癌A549细胞的多维效应。

Multidimensional effects of biologically synthesized silver nanoparticles in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma A549 cells.

作者信息

Gurunathan Sangiliyandi, Jeong Jae-Kyo, Han Jae Woong, Zhang Xi-Feng, Park Jung Hyun, Kim Jin-Hoi

机构信息

Department of Animal Biotechnology, Konkuk University, 1 Hwayang-Dong, Gwanjgin-gu, 143-701 Seoul South Korea ; GS Institute of Bio and Nanotechnology, Coimbatore, Tamilnadu India.

Department of Animal Biotechnology, Konkuk University, 1 Hwayang-Dong, Gwanjgin-gu, 143-701 Seoul South Korea.

出版信息

Nanoscale Res Lett. 2015 Feb 5;10:35. doi: 10.1186/s11671-015-0747-0. eCollection 2015.


DOI:10.1186/s11671-015-0747-0
PMID:25852332
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4384991/
Abstract

Silver nanoparticles (AgNPs) are prominent group of nanomaterials and are recognized for their diverse applications in various health sectors. This study aimed to synthesize the AgNPs using the leaf extract of Artemisia princeps as a bio-reductant. Furthermore, we evaluated the multidimensional effect of the biologically synthesized AgNPs in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma (A549) cells. UV-visible (UV-vis) spectroscopy confirmed the synthesis of AgNPs. X-ray diffraction (XRD) indicated that the AgNPs are specifically indexed to a crystal structure. The results from Fourier transform infrared spectroscopy (FTIR) indicate that biomolecules are involved in the synthesis and stabilization of AgNPs. Dynamic light scattering (DLS) studies showed the average size distribution of the particle between 10 and 40 nm, and transmission electron microscopy (TEM) confirmed that the AgNPs were significantly well separated and spherical with an average size of 20 nm. AgNPs caused dose-dependent decrease in cell viability and biofilm formation and increase in reactive oxygen species (ROS) generation and DNA fragmentation in H. pylori and H. felis. Furthermore, AgNPs induced mitochondrial-mediated apoptosis in A549 cells; conversely, AgNPs had no significant effects on L132 cells. The results from this study suggest that AgNPs could cause cell-specific apoptosis in mammalian cells. Our findings demonstrate that this environmentally friendly method for the synthesis of AgNPs and that the prepared AgNPs have multidimensional effects such as anti-bacterial and anti-biofilm activity against H. pylori and H. felis and also cytotoxic effects against human cancer cells. This report describes comprehensively the effects of AgNPs on bacteria and mammalian cells. We believe that biologically synthesized AgNPs will open a new avenue towards various biotechnological and biomedical applications in the near future.

摘要

银纳米颗粒(AgNPs)是一类重要的纳米材料,因其在各个健康领域的多样应用而受到认可。本研究旨在以朝鲜艾叶草提取物作为生物还原剂来合成AgNPs。此外,我们评估了生物合成的AgNPs对幽门螺杆菌、猫幽门螺杆菌以及人肺(L132)和肺癌(A549)细胞的多维度影响。紫外可见(UV-vis)光谱证实了AgNPs的合成。X射线衍射(XRD)表明AgNPs具有特定的晶体结构索引。傅里叶变换红外光谱(FTIR)的结果表明生物分子参与了AgNPs的合成与稳定。动态光散射(DLS)研究显示颗粒的平均尺寸分布在10至40纳米之间,透射电子显微镜(TEM)证实AgNPs显著分离良好且呈球形,平均尺寸为20纳米。AgNPs导致幽门螺杆菌和猫幽门螺杆菌的细胞活力和生物膜形成呈剂量依赖性降低,活性氧(ROS)生成和DNA片段化增加。此外,AgNPs诱导A549细胞发生线粒体介导的凋亡;相反,AgNPs对L132细胞没有显著影响。本研究结果表明AgNPs可在哺乳动物细胞中引起细胞特异性凋亡。我们的研究结果表明,这种合成AgNPs的环境友好方法以及所制备的AgNPs具有多维度效应,如对幽门螺杆菌和猫幽门螺杆菌具有抗菌和抗生物膜活性,对人癌细胞具有细胞毒性作用。本报告全面描述了AgNPs对细菌和哺乳动物细胞的影响。我们相信,生物合成的AgNPs在不久的将来将为各种生物技术和生物医学应用开辟一条新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40ea/4384991/8c46818c6bdb/11671_2015_747_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40ea/4384991/c20ec5e7c9b2/11671_2015_747_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40ea/4384991/4dec3cf5a13a/11671_2015_747_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40ea/4384991/01e3b1584297/11671_2015_747_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40ea/4384991/570b9d364c63/11671_2015_747_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40ea/4384991/fa48f02c745d/11671_2015_747_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40ea/4384991/39c8aaabd0a6/11671_2015_747_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40ea/4384991/115011182cf3/11671_2015_747_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40ea/4384991/133cd26677d3/11671_2015_747_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40ea/4384991/193c40d00d22/11671_2015_747_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40ea/4384991/13adb3ac13cd/11671_2015_747_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40ea/4384991/839d1ae96933/11671_2015_747_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40ea/4384991/8964102d4683/11671_2015_747_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40ea/4384991/38fc9c562f50/11671_2015_747_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40ea/4384991/8c46818c6bdb/11671_2015_747_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40ea/4384991/c20ec5e7c9b2/11671_2015_747_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40ea/4384991/4dec3cf5a13a/11671_2015_747_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40ea/4384991/01e3b1584297/11671_2015_747_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40ea/4384991/570b9d364c63/11671_2015_747_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40ea/4384991/fa48f02c745d/11671_2015_747_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40ea/4384991/39c8aaabd0a6/11671_2015_747_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40ea/4384991/115011182cf3/11671_2015_747_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40ea/4384991/133cd26677d3/11671_2015_747_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40ea/4384991/193c40d00d22/11671_2015_747_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40ea/4384991/13adb3ac13cd/11671_2015_747_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40ea/4384991/839d1ae96933/11671_2015_747_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40ea/4384991/8964102d4683/11671_2015_747_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40ea/4384991/38fc9c562f50/11671_2015_747_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40ea/4384991/8c46818c6bdb/11671_2015_747_Fig14_HTML.jpg

相似文献

[1]
Multidimensional effects of biologically synthesized silver nanoparticles in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma A549 cells.

Nanoscale Res Lett. 2015-2-5

[2]
Ecofriendly synthesis of silver and gold nanoparticles by Euphrasia officinalis leaf extract and its biomedical applications.

Artif Cells Nanomed Biotechnol. 2017-8-8

[3]
Unveiling the potentials of biocompatible silver nanoparticles on human lung carcinoma A549 cells and Helicobacter pylori.

Sci Rep. 2019-4-8

[4]
Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: targeting p53 for anticancer therapy.

Int J Nanomedicine. 2015-6-29

[5]
Synthesis, characterization, biocompatible and anticancer activity of green and chemically synthesized silver nanoparticles - A comparative study.

Biomed Pharmacother. 2016-9-14

[6]
Exploiting antidiabetic activity of silver nanoparticles synthesized using Punica granatum leaves and anticancer potential against human liver cancer cells (HepG2).

Artif Cells Nanomed Biotechnol. 2017-6-14

[7]
Green synthesis of silver nanoparticles using Andean blackberry fruit extract.

Saudi J Biol Sci. 2017-1

[8]
Phytosynthesis of silver nanoparticles using Artemisia marschalliana Sprengel aerial part extract and assessment of their antioxidant, anticancer, and antibacterial properties.

Int J Nanomedicine. 2016-4-29

[9]
Characterization, Antibacterial and Antioxidant Properties of Silver Nanoparticles Synthesized from Aqueous Extracts of , , and .

Pharmacogn Mag. 2017-7

[10]
Bioengineering of Piper longum L. extract mediated silver nanoparticles and their potential biomedical applications.

Mater Sci Eng C Mater Biol Appl. 2019-7-18

引用本文的文献

[1]
Synthesis of AgO/Ag Nanoparticles Using Puerarin: Characterization, Cytotoxicity, Safety Profile, Antioxidant, and Antimicrobial Potential Against Nosocomial Pathogens.

J Funct Biomater. 2025-7-11

[2]
From Nano- to Microsilver: Morphology Control and Shape Evolution of Facile One-Step Electrochemical Synthesis of Silver Particles on TiO Nanotubes.

Langmuir. 2025-7-1

[3]
Silver Nanoparticles (AgNPs): Comprehensive Insights into Bio/Synthesis, Key Influencing Factors, Multifaceted Applications, and Toxicity-A 2024 Update.

ACS Omega. 2025-2-18

[4]
"Therapeutic advancements in nanomedicine: The multifaceted roles of silver nanoparticles".

Biotechnol Notes. 2024-6-1

[5]
Antibacterial efficacy and osteogenic potential of mineral trioxide aggregate-based retrograde filling material incorporated with silver nanoparticle and calcium fluoride.

J Dent Sci. 2024-7

[6]
Implications of silver nanoparticles for infection: modulation of CagA function and signaling.

Front Cell Infect Microbiol. 2024

[7]
Biochemical characterization of immobilized recombinant subtilisin and synthesis and functional characterization of recombinant subtilisin capped silver and zinc oxide nanoparticles.

Saudi J Biol Sci. 2024-7

[8]
Green Synthesis of Silver Nanoparticles and their Potential Applications in Mitigating Cancer.

Curr Pharm Des. 2024

[9]
Characteristic Improvement of a Carrageenan-Based Bionanocomposite Polymer Film Containing Montmorillonite as Food Packaging through the Addition of Silver and Cerium Oxide Nanoparticles.

ACS Omega. 2023-10-12

[10]
Current Overview of Metal Nanoparticles' Synthesis, Characterization, and Biomedical Applications, with a Focus on Silver and Gold Nanoparticles.

Pharmaceuticals (Basel). 2023-10-4

本文引用的文献

[1]
Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria.

Nanoscale Res Lett. 2014-7-31

[2]
Growth kinetics and mechanistic action of reactive oxygen species released by silver nanoparticles from Aspergillus niger on Escherichia coli.

Biomed Res Int. 2014-6-16

[3]
Cytotoxic potential of silver nanoparticles.

Yonsei Med J. 2014-3

[4]
Potential theranostics application of bio-synthesized silver nanoparticles (4-in-1 system).

Theranostics. 2014-1-29

[5]
Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: a potential cytotoxic agent against breast cancer cells.

Int J Nanomedicine. 2013-11-15

[6]
Biocompatibility effects of biologically synthesized graphene in primary mouse embryonic fibroblast cells.

Nanoscale Res Lett. 2013-9-23

[7]
Biogenic silver nanoparticles using Rhinacanthus nasutus leaf extract: synthesis, spectral analysis, and antimicrobial studies.

Int J Nanomedicine. 2013-9-2

[8]
Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment.

Cell Host Microbe. 2013-8-14

[9]
Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin.

Cell Host Microbe. 2013-8-14

[10]
Interaction of silver nanoparticles with serum proteins affects their antimicrobial activity in vivo.

Antimicrob Agents Chemother. 2013-7-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索