Szabó Nora-Emöke, Haddad-Tóvolli Roberta, Zhou Xunlei, Alvarez-Bolado Gonzalo
Department Neurobiology and Development, Neural Circuit Development Unit, IRCM Montréal, QC, Canada.
Department of Neuroanatomy, University of Heidelberg Heidelberg, Germany.
Front Neuroanat. 2015 Mar 19;9:29. doi: 10.3389/fnana.2015.00029. eCollection 2015.
Expression of intricate combinations of cadherins (a family of adhesive membrane proteins) is common in the developing central nervous system. On this basis, a combinatorial cadherin code has long been proposed to underlie neuronal sorting and to be ultimately responsible for the layers, columns and nuclei of the brain. However, experimental proof of this particular function of cadherins has proven difficult to obtain and the question is still not clear. Alternatively, non-specific, non-combinatorial, purely quantitative adhesive differentials have been proposed to explain neuronal sorting in the brain. Do cadherin combinations underlie brain cytoarchitecture? We approached this question using as model a well-defined forebrain nucleus, the mammillary body (MBO), which shows strong, homogeneous expression of one single cadherin (Cdh11) and patterned, combinatorial expression of Cdh6, -8 and -10. We found that, besides the known combinatorial Cdh pattern, MBO cells are organized into a second, non-overlapping pattern grouping neurons with the same date of neurogenesis. We report that, in the Foxb1 mouse mutant, Cdh11 expression fails to be maintained during MBO development. This disrupted the combination-based as well as the birthdate-based sorting in the mutant MBO. In utero RNA interference (RNAi) experiments knocking down Cdh11 in MBO-fated migrating neurons at one specific age showed that Cdh11 expression is required for chronological entrance in the MBO. Our results suggest that neuronal sorting in the developing MBO is caused by adhesion-based, non-combinatorial mechanisms that keep neurons sorted according to birthdate information (possibly matching them to target neurons chronologically sorted in the same manner). Non-specific adhesion mechanisms would also prevent cadherin combinations from altering the birthdate-based sorting. Cadherin combinations would presumably act later to support specific synaptogenesis through specific axonal fasciculation and final target recognition.
钙黏蛋白(一种黏附性膜蛋白家族)复杂组合的表达在发育中的中枢神经系统中很常见。基于此,长期以来人们一直提出一种组合性钙黏蛋白编码是神经元分选的基础,并最终决定大脑的层、柱和核。然而,要获得钙黏蛋白这一特定功能的实验证据一直很困难,这个问题仍然不清楚。另外,有人提出非特异性、非组合性、纯粹定量的黏附差异来解释大脑中的神经元分选。钙黏蛋白组合是大脑细胞结构的基础吗?我们以一个定义明确的前脑核——乳头体(MBO)为模型来探讨这个问题,该乳头体显示出单一钙黏蛋白(Cdh11)的强烈、均匀表达以及Cdh6、-8和-10的模式化、组合性表达。我们发现,除了已知的组合性Cdh模式外,MBO细胞还被组织成第二种不重叠的模式,将具有相同神经发生日期的神经元分组。我们报告说,在Foxb1小鼠突变体中,MBO发育过程中Cdh11的表达未能维持。这扰乱了突变体MBO中基于组合以及基于出生日期的分选。在子宫内RNA干扰(RNAi)实验中,在一个特定年龄敲低注定要迁移到MBO的神经元中的Cdh1l,结果表明Cdh11表达是按时间顺序进入MBO所必需的。我们的结果表明,发育中的MBO中的神经元分选是由基于黏附的非组合机制引起的,这些机制根据出生日期信息保持神经元的分选(可能按时间顺序将它们与以相同方式分选的靶神经元匹配)。非特异性黏附机制也会阻止钙黏蛋白组合改变基于出生日期的分选。钙黏蛋白组合可能随后通过特定的轴突成束和最终靶标识别来支持特定的突触形成。