Suppr超能文献

绘制小鼠门齿釉质晶界和非晶质界面处的残留有机物和碳酸盐。

Mapping residual organics and carbonate at grain boundaries and the amorphous interphase in mouse incisor enamel.

作者信息

Gordon Lyle M, Joester Derk

机构信息

Department of Materials Science and Engineering, Northwestern University Evanston, IL, USA.

出版信息

Front Physiol. 2015 Mar 19;6:57. doi: 10.3389/fphys.2015.00057. eCollection 2015.

Abstract

Dental enamel has evolved to resist the most grueling conditions of mechanical stress, fatigue, and wear. Adding insult to injury, it is exposed to the frequently corrosive environment of the oral cavity. While its hierarchical structure is unrivaled in its mechanical resilience, heterogeneity in the distribution of magnesium ions and the presence of Mg-substituted amorphous calcium phosphate (Mg-ACP) as an intergranular phase have recently been shown to increase the susceptibility of mouse enamel to acid attack. Herein we investigate the distribution of two important constituents of enamel, residual organic matter and inorganic carbonate. We find that organics, carbonate, and possibly water show distinct distribution patterns in the mouse enamel crystallites, at simple grain boundaries, and in the amorphous interphase at multiple grain boundaries. This has implications for the resistance to acid corrosion, mechanical properties, and the mechanism by which enamel crystals grow during amelogenesis.

摘要

牙釉质已经进化到能够抵抗最严酷的机械应力、疲劳和磨损条件。雪上加霜的是,它还暴露在口腔中频繁具有腐蚀性的环境中。虽然其层次结构在机械弹性方面无与伦比,但最近研究表明,镁离子分布的不均匀性以及作为晶间相存在的镁取代无定形磷酸钙(Mg-ACP)会增加小鼠牙釉质对酸侵蚀的敏感性。在此,我们研究了牙釉质的两种重要成分,残余有机物和无机碳酸盐的分布情况。我们发现,有机物、碳酸盐以及可能的水在小鼠牙釉质微晶、简单晶界和多晶界处的无定形中间相中呈现出不同的分布模式。这对耐酸腐蚀性、机械性能以及釉质晶体在釉质形成过程中的生长机制具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d69/4365691/7b49c7e5e7a8/fphys-06-00057-g0001.jpg

相似文献

1
Mapping residual organics and carbonate at grain boundaries and the amorphous interphase in mouse incisor enamel.
Front Physiol. 2015 Mar 19;6:57. doi: 10.3389/fphys.2015.00057. eCollection 2015.
2
Dental materials. Amorphous intergranular phases control the properties of rodent tooth enamel.
Science. 2015 Feb 13;347(6223):746-50. doi: 10.1126/science.1258950.
3
Atomic-scale compositional mapping reveals Mg-rich amorphous calcium phosphate in human dental enamel.
Sci Adv. 2016 Sep 7;2(9):e1601145. doi: 10.1126/sciadv.1601145. eCollection 2016 Sep.
4
Mechanically Reinforced Artificial Enamel by Mg-Induced Amorphous Intergranular Phases.
ACS Nano. 2022 Jul 26;16(7):10422-10430. doi: 10.1021/acsnano.2c00688. Epub 2022 Jul 8.
5
Chemical gradients in human enamel crystallites.
Nature. 2020 Jul;583(7814):66-71. doi: 10.1038/s41586-020-2433-3. Epub 2020 Jul 1.
6
Nanoscale pathways for human tooth decay - Central planar defect, organic-rich precipitate and high-angle grain boundary.
Biomaterials. 2020 Mar;235:119748. doi: 10.1016/j.biomaterials.2019.119748. Epub 2019 Dec 26.
8
Recent observations on enamel crystal formation during mammalian amelogenesis.
Anat Rec. 1996 Jun;245(2):208-18. doi: 10.1002/(SICI)1097-0185(199606)245:2<208::AID-AR8>3.0.CO;2-S.
9
Effect of acidity upon attrition-corrosion of human dental enamel.
J Mech Behav Biomed Mater. 2015 Apr;44:23-34. doi: 10.1016/j.jmbbm.2014.12.016. Epub 2014 Dec 19.
10
Changes in the nature and composition of enamel mineral during porcine amelogenesis.
Calcif Tissue Int. 1990 Dec;47(6):356-64. doi: 10.1007/BF02555887.

引用本文的文献

1
Stratification of fluoride uptake among enamel crystals with age elucidated by atom probe tomography.
Commun Mater. 2024;5(1):270. doi: 10.1038/s43246-024-00709-8. Epub 2024 Dec 19.
2
Fluorapatite nanorod arrays with enamel-like bundle structure regulated by iron ions.
RSC Adv. 2023 Sep 22;13(40):28112-28119. doi: 10.1039/d3ra03652a. eCollection 2023 Sep 18.
3
Elucidating the Structure and Composition of Individual Bimetallic Nanoparticles in Supported Catalysts by Atom Probe Tomography.
J Am Chem Soc. 2023 Aug 9;145(31):17299-17308. doi: 10.1021/jacs.3c04474. Epub 2023 Jul 25.
4
Resolving protein-mineral interfacial interactions during mineralization by atom probe tomography.
Mater Today Adv. 2023 Jun;18. doi: 10.1016/j.mtadv.2023.100378. Epub 2023 May 23.
5
Mesoscale structural gradients in human tooth enamel.
Proc Natl Acad Sci U S A. 2022 Dec 27;119(52):e2211285119. doi: 10.1073/pnas.2211285119. Epub 2022 Dec 19.
6
Adam10-dependent Notch signaling establishes dental epithelial cell boundaries required for enamel formation.
iScience. 2022 Sep 16;25(10):105154. doi: 10.1016/j.isci.2022.105154. eCollection 2022 Oct 21.
7
Surface and Structural Studies of Age-Related Changes in Dental Enamel: An Animal Model.
Materials (Basel). 2022 Jun 3;15(11):3993. doi: 10.3390/ma15113993.
8
Studies of Peculiar Mg-Containing and Oscillating Bioapatites in Sheep and Horse Teeth.
Biomolecules. 2021 Sep 30;11(10):1436. doi: 10.3390/biom11101436.
9
A Qualitative and Comprehensive Analysis of Caries Susceptibility for Dental Fluorosis Patients.
Antibiotics (Basel). 2021 Aug 27;10(9):1047. doi: 10.3390/antibiotics10091047.

本文引用的文献

1
Dental materials. Amorphous intergranular phases control the properties of rodent tooth enamel.
Science. 2015 Feb 13;347(6223):746-50. doi: 10.1126/science.1258950.
2
Atomically resolved tissue integration.
Nano Lett. 2014 Aug 13;14(8):4220-3. doi: 10.1021/nl501564f. Epub 2014 Jul 9.
3
Microscopic evidence for liquid-liquid separation in supersaturated CaCO3 solutions.
Science. 2013 Aug 23;341(6148):885-9. doi: 10.1126/science.1230915.
4
Atom probe tomography of apatites and bone-type mineralized tissues.
ACS Nano. 2012 Dec 21;6(12):10667-75. doi: 10.1021/nn3049957. Epub 2012 Dec 4.
5
Rodent model in caries research.
Odontology. 2013 Jan;101(1):9-14. doi: 10.1007/s10266-012-0091-0. Epub 2012 Nov 6.
6
Ceramic-like wear behaviour of human dental enamel.
J Mech Behav Biomed Mater. 2012 Apr;8:47-57. doi: 10.1016/j.jmbbm.2011.12.002. Epub 2011 Dec 15.
7
Nanoscale chemical tomography of buried organic-inorganic interfaces in the chiton tooth.
Nature. 2011 Jan 13;469(7329):194-7. doi: 10.1038/nature09686.
8
Atom probe microscopy of self-assembled monolayers: preliminary results.
Langmuir. 2010 Apr 20;26(8):5291-4. doi: 10.1021/la904459k.
9
Size-dependent elastic/inelastic behavior of enamel over millimeter and nanometer length scales.
Biomaterials. 2010 Mar;31(7):1955-63. doi: 10.1016/j.biomaterials.2009.11.045. Epub 2009 Dec 6.
10
Understanding the mechanical behaviour of human enamel from its structural and compositional characteristics.
J Mech Behav Biomed Mater. 2008 Jan;1(1):18-29. doi: 10.1016/j.jmbbm.2007.05.001. Epub 2007 May 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验