Yu Na, Canavier Carmen C
Department of Cell Biology and Anatomy, Louisiana State University School of Medicine, New Orleans, LA 70112 USA ; Department of Mathematics and Computer Science, Lawrence Technological University, 21000 West 10 Mile Road, Southfield, MI 48075 USA.
Department of Cell Biology and Anatomy, Louisiana State University School of Medicine, New Orleans, LA 70112 USA.
J Math Neurosci. 2015 Feb 27;5:5. doi: 10.1186/s13408-015-0017-6. eCollection 2015.
Midbrain dopamine neurons exhibit a novel type of bursting that we call "inverted square wave bursting" when exposed to Ca(2+)-activated small conductance (SK) K(+) channel blockers in vitro. This type of bursting has three phases: hyperpolarized silence, spiking, and depolarization block. We find that two slow variables are required for this type of bursting, and we show that the three-dimensional bifurcation diagram for inverted square wave bursting is a folded surface with upper (depolarized) and lower (hyperpolarized) branches. The activation of the L-type Ca(2+) channel largely supports the separation between these branches. Spiking is initiated at a saddle node on an invariant circle bifurcation at the folded edge of the lower branch and the trajectory spirals around the unstable fixed points on the upper branch. Spiking is terminated at a supercritical Hopf bifurcation, but the trajectory remains on the upper branch until it hits a saddle node on the upper folded edge and drops to the lower branch. The two slow variables contribute as follows. A second, slow component of sodium channel inactivation is largely responsible for the initiation and termination of spiking. The slow activation of the ether-a-go-go-related (ERG) K(+) current is largely responsible for termination of the depolarized plateau. The mechanisms and slow processes identified herein may contribute to bursting as well as entry into and recovery from the depolarization block to different degrees in different subpopulations of dopamine neurons in vivo.
中脑多巴胺神经元在体外暴露于钙激活的小电导(SK)钾通道阻滞剂时,会表现出一种新型的爆发式放电,我们称之为“倒方波爆发”。这种爆发式放电有三个阶段:超极化沉默、尖峰放电和去极化阻滞。我们发现这种爆发式放电需要两个慢变量,并且我们表明倒方波爆发的三维分岔图是一个具有上(去极化)和下(超极化)分支的折叠表面。L型钙通道的激活在很大程度上支持了这些分支之间的分离。尖峰放电在下分支折叠边缘的不变圆分岔处的鞍结处开始,轨迹围绕上分支上的不稳定固定点螺旋上升。尖峰放电在超临界霍普夫分岔处终止,但轨迹一直停留在上分支,直到它到达上折叠边缘的鞍结并下降到下分支。这两个慢变量的作用如下。钠通道失活的第二个慢成分在很大程度上负责尖峰放电的起始和终止。醚 - 去极化相关(ERG)钾电流的缓慢激活在很大程度上负责去极化平台期的终止。本文确定的机制和慢过程可能在体内多巴胺神经元的不同亚群中,在不同程度上对爆发式放电以及进入去极化阻滞和从中恢复起到作用。