Suppr超能文献

中脑多巴胺能神经元中快速钠通道缓慢失活介导的去极化阻滞的数学分析

Mathematical analysis of depolarization block mediated by slow inactivation of fast sodium channels in midbrain dopamine neurons.

作者信息

Qian Kun, Yu Na, Tucker Kristal R, Levitan Edwin S, Canavier Carmen C

机构信息

Department of Cell Biology and Anatomy, Louisiana State University School of Medicine, New Orleans, Louisiana; Neuroscience Center of Excellence, Louisiana State University School of Medicine, New Orleans, Louisiana; and.

Department of Cell Biology and Anatomy, Louisiana State University School of Medicine, New Orleans, Louisiana;

出版信息

J Neurophysiol. 2014 Dec 1;112(11):2779-90. doi: 10.1152/jn.00578.2014. Epub 2014 Sep 3.

Abstract

Dopamine neurons in freely moving rats often fire behaviorally relevant high-frequency bursts, but depolarization block limits the maximum steady firing rate of dopamine neurons in vitro to ∼10 Hz. Using a reduced model that faithfully reproduces the sodium current measured in these neurons, we show that adding an additional slow component of sodium channel inactivation, recently observed in these neurons, qualitatively changes in two different ways how the model enters into depolarization block. First, the slow time course of inactivation allows multiple spikes to be elicited during a strong depolarization prior to entry into depolarization block. Second, depolarization block occurs near or below the spike threshold, which ranges from -45 to -30 mV in vitro, because the additional slow component of inactivation negates the sodium window current. In the absence of the additional slow component of inactivation, this window current produces an N-shaped steady-state current-voltage (I-V) curve that prevents depolarization block in the experimentally observed voltage range near -40 mV. The time constant of recovery from slow inactivation during the interspike interval limits the maximum steady firing rate observed prior to entry into depolarization block. These qualitative features of the entry into depolarization block can be reversed experimentally by replacing the native sodium conductance with a virtual conductance lacking the slow component of inactivation. We show that the activation of NMDA and AMPA receptors can affect bursting and depolarization block in different ways, depending upon their relative contributions to depolarization versus to the total linear/nonlinear conductance.

摘要

自由活动大鼠的多巴胺神经元通常会产生与行为相关的高频爆发式放电,但去极化阻滞将体外多巴胺神经元的最大稳定放电频率限制在约10赫兹。我们使用一个能忠实地再现这些神经元中测量到的钠电流的简化模型,发现添加最近在这些神经元中观察到的钠通道失活的另一个慢成分,会以两种不同方式定性地改变模型进入去极化阻滞的方式。首先,失活的慢时间进程允许在进入去极化阻滞之前的强去极化期间引发多个动作电位。其次,去极化阻滞发生在动作电位阈值附近或以下(体外阈值范围为-45至-30毫伏),因为额外的失活慢成分抵消了钠窗电流。在没有额外的失活慢成分时,这种窗电流产生一个N形的稳态电流-电压(I-V)曲线,从而在实验观察到的接近-40毫伏的电压范围内防止去极化阻滞。动作电位间隔期间从慢失活恢复的时间常数限制了进入去极化阻滞之前观察到的最大稳定放电频率。通过用缺乏失活慢成分的虚拟电导替代天然钠电导,实验上可以逆转进入去极化阻滞的这些定性特征。我们表明,NMDA和AMPA受体的激活可以以不同方式影响爆发式放电和去极化阻滞,这取决于它们对去极化与总线性/非线性电导的相对贡献。

相似文献

1
Mathematical analysis of depolarization block mediated by slow inactivation of fast sodium channels in midbrain dopamine neurons.
J Neurophysiol. 2014 Dec 1;112(11):2779-90. doi: 10.1152/jn.00578.2014. Epub 2014 Sep 3.
2
Inactivation mode of sodium channels defines the different maximal firing rates of conventional versus atypical midbrain dopamine neurons.
PLoS Comput Biol. 2021 Sep 17;17(9):e1009371. doi: 10.1371/journal.pcbi.1009371. eCollection 2021 Sep.
3
Transient high-frequency firing in a coupled-oscillator model of the mesencephalic dopaminergic neuron.
J Neurophysiol. 2006 Feb;95(2):932-47. doi: 10.1152/jn.00691.2004. Epub 2005 Oct 5.
5
Pacemaker rate and depolarization block in nigral dopamine neurons: a somatic sodium channel balancing act.
J Neurosci. 2012 Oct 17;32(42):14519-31. doi: 10.1523/JNEUROSCI.1251-12.2012.
6
9
Implications of cellular models of dopamine neurons for schizophrenia.
Prog Mol Biol Transl Sci. 2014;123:53-82. doi: 10.1016/B978-0-12-397897-4.00011-5.
10
A dynamic role for GABA receptors on the firing pattern of midbrain dopaminergic neurons.
J Neurophysiol. 2010 Jul;104(1):403-13. doi: 10.1152/jn.00204.2010. Epub 2010 May 5.

引用本文的文献

1
Tau conveys intrinsic hyperactivity of VTA dopamine neurons but an inability to sustain burst firing.
bioRxiv. 2025 Jul 31:2025.07.28.666953. doi: 10.1101/2025.07.28.666953.
2
Dimensionality reduction of neuronal degeneracy reveals two interfering physiological mechanisms.
PNAS Nexus. 2024 Sep 19;3(10):pgae415. doi: 10.1093/pnasnexus/pgae415. eCollection 2024 Oct.
4
Electrophysiological Properties of Proprioception-Related Neurons in the Intermediate Thoracolumbar Spinal Cord.
eNeuro. 2024 Apr 26;11(4). doi: 10.1523/ENEURO.0331-23.2024. Print 2024 Apr.
6
Single-compartment model of a pyramidal neuron, fitted to recordings with current and conductance injection.
Biol Cybern. 2023 Dec;117(6):433-451. doi: 10.1007/s00422-023-00976-7. Epub 2023 Sep 27.
7
Sodium channel slow inactivation normalizes firing in axons with uneven conductance distributions.
Curr Biol. 2023 May 8;33(9):1818-1824.e3. doi: 10.1016/j.cub.2023.03.043. Epub 2023 Apr 5.
9
Depolarization block in olfactory sensory neurons expands the dimensionality of odor encoding.
Sci Adv. 2022 Dec 16;8(50):eade7209. doi: 10.1126/sciadv.ade7209.
10
Disrupting Epileptiform Activity by Preventing Parvalbumin Interneuron Depolarization Block.
J Neurosci. 2021 Nov 10;41(45):9452-9465. doi: 10.1523/JNEUROSCI.1002-20.2021. Epub 2021 Oct 5.

本文引用的文献

1
Implications of cellular models of dopamine neurons for schizophrenia.
Prog Mol Biol Transl Sci. 2014;123:53-82. doi: 10.1016/B978-0-12-397897-4.00011-5.
2
Dissecting the diversity of midbrain dopamine neurons.
Trends Neurosci. 2013 Jun;36(6):336-42. doi: 10.1016/j.tins.2013.03.003. Epub 2013 Apr 12.
3
Pacemaker rate and depolarization block in nigral dopamine neurons: a somatic sodium channel balancing act.
J Neurosci. 2012 Oct 17;32(42):14519-31. doi: 10.1523/JNEUROSCI.1251-12.2012.
4
Exploring neuronal bistability at the depolarization block.
PLoS One. 2012;7(8):e42811. doi: 10.1371/journal.pone.0042811. Epub 2012 Aug 10.
5
Relating ion channel expression, bifurcation structure, and diverse firing patterns in a model of an identified motor neuron.
J Comput Neurosci. 2013 Apr;34(2):211-29. doi: 10.1007/s10827-012-0416-6. Epub 2012 Aug 11.
7
On the mechanisms underlying the depolarization block in the spiking dynamics of CA1 pyramidal neurons.
J Comput Neurosci. 2012 Oct;33(2):207-25. doi: 10.1007/s10827-012-0383-y. Epub 2012 Feb 5.
8
A reduced model of DA neuronal dynamics that displays quiescence, tonic firing and bursting.
J Physiol Paris. 2011 Jan-Jun;105(1-3):53-8. doi: 10.1016/j.jphysparis.2011.07.012. Epub 2011 Sep 10.
10
Dynamic regulation of midbrain dopamine neuron activity: intrinsic, synaptic, and plasticity mechanisms.
Neuroscience. 2011 Dec 15;198:95-111. doi: 10.1016/j.neuroscience.2011.08.023. Epub 2011 Aug 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验