Suppr超能文献

持续性钠电流和M型钾电流对CA1锥体细胞体爆发式放电的作用:实验与建模相结合的研究

Contribution of persistent Na+ current and M-type K+ current to somatic bursting in CA1 pyramidal cells: combined experimental and modeling study.

作者信息

Golomb David, Yue Cuiyong, Yaari Yoel

机构信息

Department of Physiology and Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University, Be'er-Sheva, Israel.

出版信息

J Neurophysiol. 2006 Oct;96(4):1912-26. doi: 10.1152/jn.00205.2006. Epub 2006 Jun 28.

Abstract

The intrinsic firing modes of adult CA1 pyramidal cells vary along a continuum of "burstiness" from regular firing to rhythmic bursting, depending on the ionic composition of the extracellular milieu. Burstiness is low in neurons exposed to a normal extracellular Ca(2+) concentration (Ca(2+)), but is markedly enhanced by lowering Ca(2+), although not by blocking Ca(2+) and Ca(2+)-activated K(+) currents. We show, using intracellular recordings, that burstiness in low Ca(2+) persists even after truncating the apical dendrites, suggesting that bursts are generated by an interplay of membrane currents at or near the soma. To study the mechanisms of bursting, we have constructed a conductance-based, one-compartment model of CA1 pyramidal neurons. In this neuron model, reduced Ca(2+) is simulated by negatively shifting the activation curve of the persistent Na(+) current (I(NaP)) as indicated by recent experimental results. The neuron model accounts, with different parameter sets, for the diversity of firing patterns observed experimentally in both zero and normal Ca(2+). Increasing I(NaP) in the neuron model induces bursting and increases the number of spikes within a burst but is neither necessary nor sufficient for bursting. We show, using fast-slow analysis and bifurcation theory, that the M-type K(+) current (I(M)) allows bursting by shifting neuronal behavior between a silent and a tonically active state provided the kinetics of the spike generating currents are sufficiently, although not extremely, fast. We suggest that bursting in CA1 pyramidal cells can be explained by a single compartment "square bursting" mechanism with one slow variable, the activation of I(M).

摘要

成年CA1锥体神经元的固有放电模式沿着从规则放电到节律性爆发的“爆发性”连续体变化,这取决于细胞外环境的离子组成。在暴露于正常细胞外Ca(2+)浓度(Ca(2+))的神经元中爆发性较低,但通过降低Ca(2+)可显著增强爆发性,尽管阻断Ca(2+)和Ca(2+)激活的K(+)电流并不会增强爆发性。我们通过细胞内记录表明,即使在截断顶端树突后,低Ca(2+)时的爆发性仍然持续,这表明爆发是由胞体处或其附近的膜电流相互作用产生的。为了研究爆发的机制,我们构建了一个基于电导的CA1锥体神经元单室模型。在这个神经元模型中,如最近的实验结果所示,通过负向移动持续性Na(+)电流(I(NaP))的激活曲线来模拟降低的Ca(2+)。该神经元模型用不同的参数集解释了在零和正常Ca(2+)条件下实验观察到的放电模式多样性。在神经元模型中增加I(NaP)会诱导爆发并增加一次爆发内的尖峰数量,但对于爆发既不是必需的也不是充分的。我们使用快慢分析和分岔理论表明,M型K(+)电流(I(M))通过在静息状态和紧张性激活状态之间转换神经元行为来允许爆发,前提是尖峰产生电流的动力学足够快(但不是极其快)。我们认为,CA1锥体神经元中的爆发可以用具有一个慢变量(I(M)的激活)的单室“方波爆发”机制来解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验