Suppr超能文献

基于elastix的传播对齐算法在非小细胞肺癌(NSCLC)患者纵向(18)F-FDG PET/CT数据的感兴趣区(VOI)和体素分析中的评估。

Evaluation of elastix-based propagated align algorithm for VOI- and voxel-based analysis of longitudinal (18)F-FDG PET/CT data from patients with non-small cell lung cancer (NSCLC).

作者信息

Kerner Gerald Sma, Fischer Alexander, Koole Michel Jb, Pruim Jan, Groen Harry Jm

机构信息

University of Groningen and Department of Pulmonary Diseases, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30.001, , 9700 RB Groningen, The Netherlands.

Philips Technologie GmbH Innovative Technologies, Postfach 40, Philipstr. 8, Aachen, 52068 Germany.

出版信息

EJNMMI Res. 2015 Mar 21;5:15. doi: 10.1186/s13550-015-0089-z. eCollection 2015.

Abstract

BACKGROUND

Deformable image registration allows volume of interest (VOI)- and voxel-based analysis of longitudinal changes in fluorodeoxyglucose (FDG) tumor uptake in patients with non-small cell lung cancer (NSCLC). This study evaluates the performance of the elastix toolbox deformable image registration algorithm for VOI and voxel-wise assessment of longitudinal variations in FDG tumor uptake in NSCLC patients.

METHODS

Evaluation of the elastix toolbox was performed using (18)F-FDG PET/CT at baseline and after 2 cycles of therapy (follow-up) data in advanced NSCLC patients. The elastix toolbox, an integrated part of the IMALYTICS workstation, was used to apply a CT-based non-linear image registration of follow-up PET/CT data using the baseline PET/CT data as reference. Lesion statistics were compared to assess the impact on therapy response assessment. Next, CT-based deformable image registration was performed anew on the deformed follow-up PET/CT data using the original follow-up PET/CT data as reference, yielding a realigned follow-up PET dataset. Performance was evaluated by determining the correlation coefficient between original and realigned follow-up PET datasets. The intra- and extra-thoracic tumors were automatically delineated on the original PET using a 41% of maximum standardized uptake value (SUVmax) adaptive threshold. Equivalence between reference and realigned images was tested (determining 95% range of the difference) and estimating the percentage of voxel values that fell within that range.

RESULTS

Thirty-nine patients with 191 tumor lesions were included. In 37/39 and 12/39 patients, respectively, thoracic and non-thoracic lesions were evaluable for response assessment. Using the EORTC/SUVmax-based criteria, 5/37 patients had a discordant response of thoracic, and 2/12 a discordant response of non-thoracic lesions between the reference and the realigned image. FDG uptake values of corresponding tumor voxels in the original and realigned reference PET correlated well (R (2)=0.98). Using equivalence testing, 94% of all the voxel values fell within the 95% range of the difference between original and realigned reference PET.

CONCLUSIONS

The elastix toolbox impacts lesion statistics and therefore therapy response assessment in a clinically significant way. The elastix toolbox is therefore not applicable in its current form and/or standard settings for PET response evaluation. Further optimization and validation of this technique is necessary prior to clinical implementation.

摘要

背景

可变形图像配准允许对非小细胞肺癌(NSCLC)患者氟脱氧葡萄糖(FDG)肿瘤摄取的纵向变化进行基于感兴趣体积(VOI)和体素的分析。本研究评估了elastix工具箱可变形图像配准算法在NSCLC患者中对FDG肿瘤摄取纵向变化进行VOI和体素评估的性能。

方法

使用晚期NSCLC患者基线时和2个治疗周期后(随访)的数据,通过(18)F-FDG PET/CT对elastix工具箱进行评估。elastix工具箱是IMALYTICS工作站的一个集成部分,用于以基线PET/CT数据为参考,对随访PET/CT数据进行基于CT的非线性图像配准。比较病变统计数据以评估对治疗反应评估的影响。接下来,以原始随访PET/CT数据为参考,对变形后的随访PET/CT数据重新进行基于CT的可变形图像配准,生成重新对齐的随访PET数据集。通过确定原始和重新对齐的随访PET数据集之间的相关系数来评估性能。使用最大标准化摄取值(SUVmax)的41%自适应阈值在原始PET上自动勾勒胸内和胸外肿瘤。测试参考图像和重新对齐图像之间的等效性(确定差异的95%范围),并估计落在该范围内的体素值百分比。

结果

纳入了39例患者,共191个肿瘤病变。分别有37/39例和12/39例患者的胸内和胸外病变可用于反应评估。根据基于欧洲癌症研究与治疗组织(EORTC)/SUVmax的标准,5/37例患者胸内病变在参考图像和重新对齐图像之间的反应不一致,2/12例患者胸外病变反应不一致。原始和重新对齐的参考PET中相应肿瘤体素的FDG摄取值相关性良好(R(2)=0.98)。通过等效性测试,94%的体素值落在原始和重新对齐的参考PET之间差异的95%范围内。

结论

elastix工具箱对病变统计有影响,因此对治疗反应评估有临床显著影响。因此,elastix工具箱目前的形式和/或标准设置不适用于PET反应评估。在临床应用之前,需要对该技术进行进一步优化和验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/34e6/4385310/ce52474b4651/13550_2015_89_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验