Kodaira Masaki, Hatakeyama Hideyuki, Yuasa Shinsuke, Seki Tomohisa, Egashira Toru, Tohyama Shugo, Kuroda Yusuke, Tanaka Atsushi, Okata Shinichiro, Hashimoto Hisayuki, Kusumoto Dai, Kunitomi Akira, Takei Makoto, Kashimura Shin, Suzuki Tomoyuki, Yozu Gakuto, Shimojima Masaya, Motoda Chikaaki, Hayashiji Nozomi, Saito Yuki, Goto Yu-Ichi, Fukuda Keiichi
Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan ; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo, Japan.
FEBS Open Bio. 2015 Mar 20;5:219-25. doi: 10.1016/j.fob.2015.03.008. eCollection 2015.
Mitochondrial diseases are heterogeneous disorders, caused by mitochondrial dysfunction. Mitochondria are not regulated solely by nuclear genomic DNA but by mitochondrial DNA. It is difficult to develop effective therapies for mitochondrial disease because of the lack of mitochondrial disease models. Mitochondrial myopathy, encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) is one of the major mitochondrial diseases. The aim of this study was to generate MELAS-specific induced pluripotent stem cells (iPSCs) and to demonstrate that MELAS-iPSCs can be models for mitochondrial disease. We successfully established iPSCs from the primary MELAS-fibroblasts carrying 77.7% of m.3243A>G heteroplasmy. MELAS-iPSC lines ranged from 3.6% to 99.4% of m.3243A>G heteroplasmy levels. The enzymatic activities of mitochondrial respiratory complexes indicated that MELAS-iPSC-derived fibroblasts with high heteroplasmy levels showed a deficiency of complex I activity but MELAS-iPSC-derived fibroblasts with low heteroplasmy levels showed normal complex I activity. Our data indicate that MELAS-iPSCs can be models for MELAS but we should carefully select MELAS-iPSCs with appropriate heteroplasmy levels and respiratory functions for mitochondrial disease modeling.
线粒体疾病是由线粒体功能障碍引起的异质性疾病。线粒体不仅受核基因组DNA调控,还受线粒体DNA调控。由于缺乏线粒体疾病模型,很难开发出针对线粒体疾病的有效疗法。线粒体肌病、脑病、乳酸性酸中毒和卒中样发作(MELAS)是主要的线粒体疾病之一。本研究的目的是生成MELAS特异性诱导多能干细胞(iPSC),并证明MELAS-iPSC可作为线粒体疾病的模型。我们成功地从携带77.7%的m.3243A>G异质性的原发性MELAS成纤维细胞中建立了iPSC。MELAS-iPSC系的m.3243A>G异质性水平在3.6%至99.4%之间。线粒体呼吸复合体的酶活性表明,高异质性水平的MELAS-iPSC来源的成纤维细胞显示复合体I活性缺乏,但低异质性水平的MELAS-iPSC来源的成纤维细胞显示正常的复合体I活性。我们的数据表明,MELAS-iPSC可作为MELAS的模型,但我们应仔细选择具有适当异质性水平和呼吸功能的MELAS-iPSC用于线粒体疾病建模。