Suppr超能文献

由 MELAS 患者诱导多能干细胞克隆中分离出的致病线粒体异质性。

Disease-causing mitochondrial heteroplasmy segregated within induced pluripotent stem cell clones derived from a patient with MELAS.

机构信息

Department of Medicine, Mayo Clinic, Rochester, MN, USA.

出版信息

Stem Cells. 2013 Jul;31(7):1298-308. doi: 10.1002/stem.1389.

Abstract

Mitochondrial diseases display pathological phenotypes according to the mixture of mutant versus wild-type mitochondrial DNA (mtDNA), known as heteroplasmy. We herein examined the impact of nuclear reprogramming and clonal isolation of induced pluripotent stem cells (iPSC) on mitochondrial heteroplasmy. Patient-derived dermal fibroblasts with a prototypical mitochondrial deficiency diagnosed as mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) demonstrated mitochondrial dysfunction with reduced oxidative reserve due to heteroplasmy at position G13513A in the ND5 subunit of complex I. Bioengineered iPSC clones acquired pluripotency with multilineage differentiation capacity and demonstrated reduction in mitochondrial density and oxygen consumption distinguishing them from the somatic source. Consistent with the cellular mosaicism of the original patient-derived fibroblasts, the MELAS-iPSC clones contained a similar range of mtDNA heteroplasmy of the disease-causing mutation with identical profiles in the remaining mtDNA. High-heteroplasmy iPSC clones were used to demonstrate that extended stem cell passaging was sufficient to purge mutant mtDNA, resulting in isogenic iPSC subclones with various degrees of disease-causing genotypes. On comparative differentiation of iPSC clones, improved cardiogenic yield was associated with iPSC clones containing lower heteroplasmy compared with isogenic clones with high heteroplasmy. Thus, mtDNA heteroplasmic segregation within patient-derived stem cell lines enables direct comparison of genotype/phenotype relationships in progenitor cells and lineage-restricted progeny, and indicates that cell fate decisions are regulated as a function of mtDNA mutation load. The novel nuclear reprogramming-based model system introduces a disease-in-a-dish tool to examine the impact of mutant genotypes for MELAS patients in bioengineered tissues and a cellular probe for molecular features of individual mitochondrial diseases.

摘要

线粒体疾病根据突变型与野生型线粒体 DNA(mtDNA)的混合表现出病理性表型,这种混合被称为异质性。本文研究了核重编程和诱导多能干细胞(iPSC)的克隆分离对线粒体异质性的影响。患有典型线粒体缺陷的患者源性皮肤成纤维细胞被诊断为线粒体脑肌病伴高乳酸血症和卒中样发作(MELAS),由于 I 复合物 ND5 亚基中的 G13513A 位置的异质性,表现出线粒体功能障碍和氧化储备减少。生物工程 iPSC 克隆获得多能性,具有多能性分化能力,并表现出线粒体密度降低和耗氧量减少,与体细胞来源区分开来。与原始患者源性成纤维细胞的细胞嵌合体一致,MELAS-iPSC 克隆包含导致疾病的突变的相似范围的 mtDNA 异质性,其余 mtDNA 具有相同的图谱。高异质性 iPSC 克隆用于证明延长干细胞传代足以清除突变 mtDNA,导致具有不同程度致病基因型的同基因 iPSC 亚克隆。在 iPSC 克隆的比较分化中,与同基因高异质性克隆相比,含有较低异质性的 iPSC 克隆与改善的心脏生成产量相关。因此,患者源性干细胞系中的 mtDNA 异质性分离使我们能够直接比较祖细胞和谱系受限后代中的基因型/表型关系,并表明细胞命运决定是作为 mtDNA 突变负荷的函数进行调节的。这种基于核重编程的新型模型系统为 MELAS 患者的生物工程组织和单个线粒体疾病的分子特征的细胞探针引入了一种疾病在盘中的工具,用于检查突变基因型的影响。

相似文献

2
TALEN-mediated shift of mitochondrial DNA heteroplasmy in MELAS-iPSCs with m.13513G>A mutation.
Sci Rep. 2017 Nov 14;7(1):15557. doi: 10.1038/s41598-017-15871-y.
4
Targeted elimination of mutant mitochondrial DNA in MELAS-iPSCs by mitoTALENs.
Protein Cell. 2018 Mar;9(3):283-297. doi: 10.1007/s13238-017-0499-y. Epub 2018 Jan 9.
5
Metabolic rescue in pluripotent cells from patients with mtDNA disease.
Nature. 2015 Aug 13;524(7564):234-8. doi: 10.1038/nature14546. Epub 2015 Jul 15.
7
Tissue- and cell-type-specific manifestations of heteroplasmic mtDNA 3243A>G mutation in human induced pluripotent stem cell-derived disease model.
Proc Natl Acad Sci U S A. 2013 Sep 17;110(38):E3622-30. doi: 10.1073/pnas.1311660110. Epub 2013 Sep 3.
9
Impaired respiratory function in MELAS-induced pluripotent stem cells with high heteroplasmy levels.
FEBS Open Bio. 2015 Mar 20;5:219-25. doi: 10.1016/j.fob.2015.03.008. eCollection 2015.

引用本文的文献

3
The Clinical Spectrum of Mosaic Genetic Disease.
Genes (Basel). 2024 Sep 24;15(10):1240. doi: 10.3390/genes15101240.
4
Metabolic control of induced pluripotency.
Front Cell Dev Biol. 2024 Jan 11;11:1328522. doi: 10.3389/fcell.2023.1328522. eCollection 2023.
6
Induced pluripotent stem cells: ex vivo models for human diseases due to mitochondrial DNA mutations.
J Biomed Sci. 2023 Sep 22;30(1):82. doi: 10.1186/s12929-023-00967-7.
7
Coating-Free Culture Medium for Establishing and Maintaining Human Induced Pluripotent Stem Cells.
Cell Transplant. 2023 Jan-Dec;32:9636897231198172. doi: 10.1177/09636897231198172.
9
Modeling mitochondrial DNA diseases: from base editing to pluripotent stem-cell-derived organoids.
EMBO Rep. 2023 Apr 5;24(4):e55678. doi: 10.15252/embr.202255678. Epub 2023 Mar 6.
10
Recent Advances in Modeling Mitochondrial Cardiomyopathy Using Human Induced Pluripotent Stem Cells.
Front Cell Dev Biol. 2022 Jan 10;9:800529. doi: 10.3389/fcell.2021.800529. eCollection 2021.

本文引用的文献

1
Induced pluripotent stem cells with a mitochondrial DNA deletion.
Stem Cells. 2013 Jul;31(7):1287-97. doi: 10.1002/stem.1354.
2
Metabolic plasticity in stem cell homeostasis and differentiation.
Cell Stem Cell. 2012 Nov 2;11(5):596-606. doi: 10.1016/j.stem.2012.10.002.
7
Energy metabolism in human pluripotent stem cells and their differentiated counterparts.
PLoS One. 2011;6(6):e20914. doi: 10.1371/journal.pone.0020914. Epub 2011 Jun 17.
8
A framework for variation discovery and genotyping using next-generation DNA sequencing data.
Nat Genet. 2011 May;43(5):491-8. doi: 10.1038/ng.806. Epub 2011 Apr 10.
9
Mitochondrial rejuvenation after induced pluripotency.
PLoS One. 2010 Nov 23;5(11):e14095. doi: 10.1371/journal.pone.0014095.
10
Gimap3 regulates tissue-specific mitochondrial DNA segregation.
PLoS Genet. 2010 Oct 14;6(10):e1001161. doi: 10.1371/journal.pgen.1001161.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验