Department of Medicine, Mayo Clinic, Rochester, MN, USA.
Stem Cells. 2013 Jul;31(7):1298-308. doi: 10.1002/stem.1389.
Mitochondrial diseases display pathological phenotypes according to the mixture of mutant versus wild-type mitochondrial DNA (mtDNA), known as heteroplasmy. We herein examined the impact of nuclear reprogramming and clonal isolation of induced pluripotent stem cells (iPSC) on mitochondrial heteroplasmy. Patient-derived dermal fibroblasts with a prototypical mitochondrial deficiency diagnosed as mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) demonstrated mitochondrial dysfunction with reduced oxidative reserve due to heteroplasmy at position G13513A in the ND5 subunit of complex I. Bioengineered iPSC clones acquired pluripotency with multilineage differentiation capacity and demonstrated reduction in mitochondrial density and oxygen consumption distinguishing them from the somatic source. Consistent with the cellular mosaicism of the original patient-derived fibroblasts, the MELAS-iPSC clones contained a similar range of mtDNA heteroplasmy of the disease-causing mutation with identical profiles in the remaining mtDNA. High-heteroplasmy iPSC clones were used to demonstrate that extended stem cell passaging was sufficient to purge mutant mtDNA, resulting in isogenic iPSC subclones with various degrees of disease-causing genotypes. On comparative differentiation of iPSC clones, improved cardiogenic yield was associated with iPSC clones containing lower heteroplasmy compared with isogenic clones with high heteroplasmy. Thus, mtDNA heteroplasmic segregation within patient-derived stem cell lines enables direct comparison of genotype/phenotype relationships in progenitor cells and lineage-restricted progeny, and indicates that cell fate decisions are regulated as a function of mtDNA mutation load. The novel nuclear reprogramming-based model system introduces a disease-in-a-dish tool to examine the impact of mutant genotypes for MELAS patients in bioengineered tissues and a cellular probe for molecular features of individual mitochondrial diseases.
线粒体疾病根据突变型与野生型线粒体 DNA(mtDNA)的混合表现出病理性表型,这种混合被称为异质性。本文研究了核重编程和诱导多能干细胞(iPSC)的克隆分离对线粒体异质性的影响。患有典型线粒体缺陷的患者源性皮肤成纤维细胞被诊断为线粒体脑肌病伴高乳酸血症和卒中样发作(MELAS),由于 I 复合物 ND5 亚基中的 G13513A 位置的异质性,表现出线粒体功能障碍和氧化储备减少。生物工程 iPSC 克隆获得多能性,具有多能性分化能力,并表现出线粒体密度降低和耗氧量减少,与体细胞来源区分开来。与原始患者源性成纤维细胞的细胞嵌合体一致,MELAS-iPSC 克隆包含导致疾病的突变的相似范围的 mtDNA 异质性,其余 mtDNA 具有相同的图谱。高异质性 iPSC 克隆用于证明延长干细胞传代足以清除突变 mtDNA,导致具有不同程度致病基因型的同基因 iPSC 亚克隆。在 iPSC 克隆的比较分化中,与同基因高异质性克隆相比,含有较低异质性的 iPSC 克隆与改善的心脏生成产量相关。因此,患者源性干细胞系中的 mtDNA 异质性分离使我们能够直接比较祖细胞和谱系受限后代中的基因型/表型关系,并表明细胞命运决定是作为 mtDNA 突变负荷的函数进行调节的。这种基于核重编程的新型模型系统为 MELAS 患者的生物工程组织和单个线粒体疾病的分子特征的细胞探针引入了一种疾病在盘中的工具,用于检查突变基因型的影响。