Suppr超能文献

用于成熟神经元高通量筛选的自动树突长度定量分析

Automatic Dendritic Length Quantification for High Throughput Screening of Mature Neurons.

作者信息

Smafield Timothy, Pasupuleti Venkat, Sharma Kamal, Huganir Richard L, Ye Bing, Zhou Jie

机构信息

Department of Computer Science, Northern Illinois University, DeKalb, IL, 60115, USA.

Department of Neuroscience, John Hopkins University, Baltimore, MD, 21205, USA.

出版信息

Neuroinformatics. 2015 Oct;13(4):443-58. doi: 10.1007/s12021-015-9267-4.

Abstract

High-throughput automated fluorescent imaging and screening are important for studying neuronal development, functions, and pathogenesis. An automatic approach of analyzing images acquired in automated fashion, and quantifying dendritic characteristics is critical for making such screens high-throughput. However, automatic and effective algorithms and tools, especially for the images of mature mammalian neurons with complex arbors, have been lacking. Here, we present algorithms and a tool for quantifying dendritic length that is fundamental for analyzing growth of neuronal network. We employ a divide-and-conquer framework that tackles the challenges of high-throughput images of neurons and enables the integration of multiple automatic algorithms. Within this framework, we developed algorithms that adapt to local properties to detect faint branches. We also developed a path search that can preserve the curvature change to accurately measure dendritic length with arbor branches and turns. In addition, we proposed an ensemble strategy of three estimation algorithms to further improve the overall efficacy. We tested our tool on images for cultured mouse hippocampal neurons immunostained with a dendritic marker for high-throughput screen. Results demonstrate the effectiveness of our proposed method when comparing the accuracy with previous methods. The software has been implemented as an ImageJ plugin and available for use.

摘要

高通量自动荧光成像和筛选对于研究神经元发育、功能及发病机制非常重要。以自动化方式分析获取的图像并量化树突特征的自动方法对于实现此类筛选的高通量至关重要。然而,一直缺乏自动且有效的算法和工具,尤其是针对具有复杂分支的成熟哺乳动物神经元图像。在此,我们提出了用于量化树突长度的算法和工具,这对于分析神经网络的生长至关重要。我们采用了分而治之的框架,该框架解决了神经元高通量图像的挑战,并实现了多种自动算法的集成。在此框架内,我们开发了适应局部特性以检测微弱分支的算法。我们还开发了一种路径搜索方法,该方法可以保留曲率变化,以准确测量带有分支和转弯的树突长度。此外,我们提出了三种估计算法的集成策略以进一步提高整体功效。我们在用于高通量筛选的、用树突标记物免疫染色的培养小鼠海马神经元图像上测试了我们的工具。与先前方法相比,结果证明了我们所提出方法的有效性。该软件已作为ImageJ插件实现并可供使用。

相似文献

1
Automatic Dendritic Length Quantification for High Throughput Screening of Mature Neurons.
Neuroinformatics. 2015 Oct;13(4):443-58. doi: 10.1007/s12021-015-9267-4.
2
Automated high content image analysis of dendritic arborization in primary mouse hippocampal and rat cortical neurons in culture.
J Neurosci Methods. 2020 Jul 15;341:108793. doi: 10.1016/j.jneumeth.2020.108793. Epub 2020 May 24.
3
Computing neurite outgrowth and arborization in superior cervical ganglion neurons.
Brain Res Bull. 2019 Jan;144:194-199. doi: 10.1016/j.brainresbull.2018.12.001. Epub 2018 Dec 6.
4
Comparing Automated Morphology Quantification Software on Dendrites of Uninjured and Injured Drosophila Neurons.
Neuroinformatics. 2021 Oct;19(4):703-717. doi: 10.1007/s12021-021-09532-9. Epub 2021 Aug 3.
6
DeTerm: Software for automatic detection of neuronal dendritic branch terminals via an artificial neural network.
Genes Cells. 2019 Jul;24(7):464-472. doi: 10.1111/gtc.12700. Epub 2019 May 28.
7
SpineJ: A software tool for quantitative analysis of nanoscale spine morphology.
Methods. 2020 Mar 1;174:49-55. doi: 10.1016/j.ymeth.2020.01.020. Epub 2020 Feb 7.
8
An open-source tool for analysis and automatic identification of dendritic spines using machine learning.
PLoS One. 2018 Jul 5;13(7):e0199589. doi: 10.1371/journal.pone.0199589. eCollection 2018.
9
Automatic contour extraction from 2D neuron images.
J Neurosci Methods. 2009 Mar 15;177(2):497-509. doi: 10.1016/j.jneumeth.2008.10.037. Epub 2008 Nov 12.
10
Improved automatic centerline tracing for dendritic and axonal structures.
Neuroinformatics. 2015 Apr;13(2):227-44. doi: 10.1007/s12021-014-9256-z.

引用本文的文献

2
Comparing Automated Morphology Quantification Software on Dendrites of Uninjured and Injured Drosophila Neurons.
Neuroinformatics. 2021 Oct;19(4):703-717. doi: 10.1007/s12021-021-09532-9. Epub 2021 Aug 3.
3
Automated Live-Cell Imaging of Synapses in Rat and Human Neuronal Cultures.
Front Cell Neurosci. 2019 Oct 17;13:467. doi: 10.3389/fncel.2019.00467. eCollection 2019.
4
Automated Neuron Detection in High-Content Fluorescence Microscopy Images Using Machine Learning.
Neuroinformatics. 2019 Apr;17(2):253-269. doi: 10.1007/s12021-018-9399-4.

本文引用的文献

1
High content image analysis identifies novel regulators of synaptogenesis in a high-throughput RNAi screen of primary neurons.
PLoS One. 2014 Mar 14;9(3):e91744. doi: 10.1371/journal.pone.0091744. eCollection 2014.
2
High-throughput genetic screen for synaptogenic factors: identification of LRP6 as critical for excitatory synapse development.
Cell Rep. 2013 Dec 12;5(5):1330-41. doi: 10.1016/j.celrep.2013.11.008. Epub 2013 Dec 5.
3
Differential striatal spine pathology in Parkinson's disease and cocaine addiction: a key role of dopamine?
Neuroscience. 2013 Oct 22;251:2-20. doi: 10.1016/j.neuroscience.2013.07.011. Epub 2013 Jul 16.
4
Remodeling of axo-spinous synapses in the pathophysiology and treatment of depression.
Neuroscience. 2013 Oct 22;251:33-50. doi: 10.1016/j.neuroscience.2012.09.057. Epub 2012 Oct 2.
5
Dendritic spine pathology in schizophrenia.
Neuroscience. 2013 Oct 22;251:90-107. doi: 10.1016/j.neuroscience.2012.04.044. Epub 2012 Apr 27.
6
Neuromantic - from semi-manual to semi-automatic reconstruction of neuron morphology.
Front Neuroinform. 2012 Mar 16;6:4. doi: 10.3389/fninf.2012.00004. eCollection 2012.
7
Sleep and synaptic homeostasis: structural evidence in Drosophila.
Science. 2011 Jun 24;332(6037):1576-81. doi: 10.1126/science.1202839.
8
The DIADEM metric: comparing multiple reconstructions of the same neuron.
Neuroinformatics. 2011 Sep;9(2-3):233-45. doi: 10.1007/s12021-011-9117-y.
9
The DIADEM and beyond.
Neuroinformatics. 2011 Sep;9(2-3):99-102. doi: 10.1007/s12021-011-9102-5.
10
Proof-editing is the bottleneck of 3D neuron reconstruction: the problem and solutions.
Neuroinformatics. 2011 Sep;9(2-3):103-5. doi: 10.1007/s12021-010-9090-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验