Suppr超能文献

从二维神经元图像中自动提取轮廓。

Automatic contour extraction from 2D neuron images.

作者信息

Leandro J J G, Cesar R M, Costa L da F

机构信息

Institute of Mathematics and Statistics - USP, Department of Computer Science, Rua do Matão, 1010 - São Paulo - SP, 05508-900, Brazil.

出版信息

J Neurosci Methods. 2009 Mar 15;177(2):497-509. doi: 10.1016/j.jneumeth.2008.10.037. Epub 2008 Nov 12.

Abstract

This work describes a novel methodology for automatic contour extraction from 2D images of 3D neurons (e.g. camera lucida images and other types of 2D microscopy). Most contour-based shape analysis methods cannot be used to characterize such cells because of overlaps between neuronal processes. The proposed framework is specifically aimed at the problem of contour following even in presence of multiple overlaps. First, the input image is preprocessed in order to obtain an 8-connected skeleton with one-pixel-wide branches, as well as a set of critical regions (i.e., bifurcations and crossings). Next, for each subtree, the tracking stage iteratively labels all valid pixel of branches, up to a critical region, where it determines the suitable direction to proceed. Finally, the labeled skeleton segments are followed in order to yield the parametric contour of the neuronal shape under analysis. The reported system was successfully tested with respect to several images and the results from a set of three neuron images are presented here, each pertaining to a different class, i.e. alpha, delta and epsilon ganglion cells, containing a total of 34 crossings. The algorithms successfully got across all these overlaps. The method has also been found to exhibit robustness even for images with close parallel segments. The proposed method is robust and may be implemented in an efficient manner. The introduction of this approach should pave the way for more systematic application of contour-based shape analysis methods in neuronal morphology.

摘要

这项工作描述了一种从三维神经元的二维图像(如明场图像和其他类型的二维显微镜图像)中自动提取轮廓的新方法。由于神经元突起之间存在重叠,大多数基于轮廓的形状分析方法无法用于表征此类细胞。所提出的框架专门针对即使存在多个重叠时的轮廓跟踪问题。首先,对输入图像进行预处理,以获得具有单像素宽分支的8连通骨架以及一组关键区域(即分叉和交叉点)。接下来,对于每个子树,跟踪阶段迭代地标记分支的所有有效像素,直到一个关键区域,在该区域确定合适的前进方向。最后,沿着标记的骨架段以生成所分析的神经元形状的参数化轮廓。所报道的系统已针对多幅图像成功进行了测试,这里展示了一组三张神经元图像的结果,每张图像属于不同类别,即α、δ和ε神经节细胞,总共包含34个交叉点。该算法成功跨越了所有这些重叠。还发现该方法即使对于具有紧密平行段的图像也具有鲁棒性。所提出的方法具有鲁棒性,并且可以以高效的方式实现。这种方法的引入应该为基于轮廓的形状分析方法在神经元形态学中的更系统应用铺平道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验