Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, 92697, USA.
Reeve-Irvine Research Center, University of California, Irvine, Irvine, CA, USA.
Neuroinformatics. 2021 Oct;19(4):703-717. doi: 10.1007/s12021-021-09532-9. Epub 2021 Aug 3.
Dendrites shape inputs and integration of depolarization that controls neuronal activity in the nervous system. Neuron pathologies can damage dendrite architecture and cause abnormalities in morphologies after injury. Dendrite regeneration can be quantified by various parameters, including total dendrite length and number of dendrite branches using manual or automated image analysis approaches. However, manual quantification is tedious and time consuming and automated approaches are often trained using wildtype neurons, making them poorly suited for analysis of genetically manipulated or injured dendrite arbors. In this study, we tested how well automated image analysis software performed on class IV Drosophila neurons, which have several hundred individual dendrite branches. We applied each software to automatically quantify features of uninjured neurons and neurons that regenerated new dendrites after injury. Regenerated arbors exhibit defects across multiple features of dendrite morphology, which makes them challenging for automated pipelines to analyze. We compared the performances of three automated pipelines against manual quantification using Simple Neurite Tracer in ImageJ: one that is commercially available (Imaris) and two developed by independent research groups (DeTerm and Tireless Tracing Genie). Out of the three software tested, we determined that Imaris is the most efficient at reconstructing dendrite architecture, but does not accurately measure total dendrite length even after intensive manual editing. Imaris outperforms both DeTerm and Tireless Tracing Genie for counting dendrite branches, and is better able to recreate previous conclusions from this same dataset. This thorough comparison of strengths and weaknesses of each software demonstrates their utility for analyzing regenerated neuron phenotypes in future studies.
树突塑造输入并整合去极化,从而控制神经系统中的神经元活动。神经元病变会破坏树突结构,并在损伤后导致形态异常。可以使用手动或自动图像分析方法通过各种参数(包括总树突长度和树突分支数量)来量化树突再生。然而,手动量化既繁琐又耗时,而自动方法通常是使用野生型神经元进行训练的,因此不适合分析遗传操作或损伤的树突分支。在这项研究中,我们测试了自动图像分析软件在具有数百个单独树突分支的 IV 类果蝇神经元上的性能如何。我们应用每种软件自动量化未受伤神经元和受伤后再生新树突的神经元的特征。再生的树突分支表现出形态学多个特征的缺陷,这使得它们难以通过自动分析流程进行分析。我们将三种自动分析流程与使用 ImageJ 中的 Simple Neurite Tracer 进行的手动量化进行了比较:一种是商业可用的(Imaris),另外两种是由独立研究小组开发的(DeTerm 和 Tireless Tracing Genie)。在测试的三种软件中,我们确定 Imaris 最擅长重建树突结构,但即使经过密集的手动编辑,也不能准确测量总树突长度。Imaris 在计数树突分支方面优于 DeTerm 和 Tireless Tracing Genie,并且能够更好地重现来自同一数据集的先前结论。对每种软件的优缺点进行的这种全面比较证明了它们在未来研究中分析再生神经元表型的实用性。