Borgan Ørnulf, Zhang Ying
Department of Mathematics, University of Oslo, P.O. Box 1053 Blindern, 0316 Oslo, Norway.
Biometrics. 2015 Sep;71(3):696-703. doi: 10.1111/biom.12308. Epub 2015 Apr 8.
Standard use of Cox regression requires collection of covariate information for all individuals in a cohort even when only a small fraction of them experiences the event of interest (fail). This may be very expensive for large cohorts. Further in biomarker studies, it will imply a waste of valuable biological material that one may want to save for future studies. A nested case-control study offers a useful alternative. For this design, covariate information is only needed for the failing individuals (cases) and a sample of controls selected from the cases' at-risk sets. Methods based on martingale residuals are useful for checking the fit of Cox's regression model for cohort data. But similar methods have so far not been developed for nested case-control data. In this article, it is described how one may define martingale residuals for nested case-control data, and it is shown how plots and tests based on cumulative sums of martingale residuals may be used to check model fit. The plots and tests may be obtained using available software.
Cox回归的标准应用要求收集队列中所有个体的协变量信息,即便其中只有一小部分个体经历了感兴趣的事件(失败)。对于大型队列而言,这可能成本高昂。此外,在生物标志物研究中,这意味着要浪费宝贵的生物材料,而这些材料可能是人们想留作未来研究之用的。巢式病例对照研究提供了一种有用的替代方法。对于这种设计,仅需要对发生事件的个体(病例)以及从病例的风险集合中选取的对照样本收集协变量信息。基于鞅残差的方法对于检验Cox回归模型对队列数据的拟合情况很有用。但迄今为止,尚未针对巢式病例对照数据开发出类似的方法。在本文中,描述了如何为巢式病例对照数据定义鞅残差,并展示了基于鞅残差累积和的绘图及检验如何用于检查模型拟合情况。这些绘图和检验可使用现有软件获得。