Suppr超能文献

Goftte:用于评估比例(子)分布风险回归模型拟合优度的 R 包。

Goftte: A R package for assessing goodness-of-fit in proportional (sub) distributions hazards regression models.

机构信息

Institut Paoli-Calmettes, Biostatistics Unit, Marseille, France.

Institut Claudius Regaud-IUCT-O, Biostatistics Unit, Toulouse, France.

出版信息

Comput Methods Programs Biomed. 2019 Aug;177:269-275. doi: 10.1016/j.cmpb.2019.05.029. Epub 2019 May 30.

Abstract

BACKGROUND AND OBJECTIVE

In this paper, we introduce a new R package goftte for goodness-of-fit assessment based on cumulative sums of model residuals useful for checking key assumptions in the Cox regression and Fine and Gray regression models.

METHODS

Monte-Carlo methods are used to approximate the null distribution of cumulative sums of model residuals. To limit the computational burden, the main routines used to approximate the null distributions are implemented in a parallel C++ programming environment. Numerical studies are carried out to evaluate the empirical type I error rates of the different testing procedures. The package and the documentation are available to users from CRAN R repositories.

RESULTS

Results from simulation studies suggested that all statistical tests implemented in goftte yielded excellent control of the type I error rate even with modest sample sizes with high censoring rates.

CONCLUSIONS

As compared to other R packages goftte provides new useful method for testing functionals, such as Anderson-Darling type test statistics for checking assumptions about proportional (sub-) distribution hazards. Approximations for the null distributions of test statistics have been validated through simulation experiments. Future releases will provide similar tools for checking model assumptions in multiplicative intensity models for recurrent data. The package may help to spread the use of recent advocated goodness-of-fit techniques in semiparametric regression for time-to-event data.

摘要

背景与目的

在本文中,我们引入了一个新的 R 包 goftte,用于基于模型残差的累积和进行拟合优度评估,这对于检查 Cox 回归和 Fine 和 Gray 回归模型中的关键假设非常有用。

方法

使用蒙特卡罗方法来近似模型残差累积和的零分布。为了限制计算负担,用于近似零分布的主要例程在并行 C++编程环境中实现。进行数值研究以评估不同检验程序的经验型 I 类错误率。该包及其文档可从 CRAN R 存储库供用户使用。

结果

模拟研究的结果表明,goftte 中实现的所有统计检验在具有高删失率的适度样本量下,都能很好地控制 I 类错误率。

结论

与其他 R 包相比,goftte 为检验函数提供了新的有用方法,例如用于检查比例(子)分布风险假设的 Anderson-Darling 型检验统计量。通过模拟实验验证了检验统计量零分布的近似值。未来的版本将为检查复发数据的乘法强度模型中的模型假设提供类似的工具。该包可能有助于推广最近在事件时间数据的半参数回归中提倡的拟合优度技术的使用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验