Suppr超能文献

基于基因本体论(GO)和内在无序性探索枢纽蛋白与药物靶点之间的关系。

Exploring the relationship between hub proteins and drug targets based on GO and intrinsic disorder.

作者信息

Fu Yuanyuan, Guo Yanzhi, Wang Yuelong, Luo Jiesi, Pu Xuemei, Li Menglong, Zhang Zhihang

机构信息

College of Chemistry, Sichuan University, Chengdu 610064, PR China.

College of Chemistry, Sichuan University, Chengdu 610064, PR China.

出版信息

Comput Biol Chem. 2015 Jun;56:41-8. doi: 10.1016/j.compbiolchem.2015.03.003. Epub 2015 Mar 23.

Abstract

Protein-protein interactions (PPIs) play essential roles in many biological processes. In protein-protein interaction networks, hubs involve in numbers of PPIs and may constitute an important source of drug targets. The intrinsic disorder proteins (IDPs) with unstable structures can promote the promiscuity of hubs and also involve in many disease pathways, so they also could serve as potential drug targets. Moreover, proteins with similar functions measured by semantic similarity of gene ontology (GO) terms tend to interact with each other. Here, the relationship between hub proteins and drug targets based on GO terms and intrinsic disorder was explored. The semantic similarities of GO terms and genes between two proteins, and the rate of intrinsic disorder residues of each protein were extracted as features to characterize the functional similarity between two interacting proteins. Only using 8 feature variables, prediction models by support vector machine (SVM) were constructed to predict PPIs. The accuracy of the model on the PPI data from human hub proteins is as high as 83.72%, which is very promising compared with other PPI prediction models with hundreds or even thousands of features. Then, 118 of 142 PPIs between hubs are correctly predicted that the two interacting proteins are targets of the same drugs. The results indicate that only 8 functional features are fully efficient for representing PPIs. In order to identify new targets from IDP dataset, the PPIs between hubs and IDPs are predicted by the SVM model and the model yields a prediction accuracy of 75.84%. Further research proves that 3 of 5 PPIs between hubs and IDPs are correctly predicted that the two interacting proteins are targets of the same drugs. All results demonstrate that the model with only 8-dimensional features from GO terms and intrinsic disorder still gives a good performance in predicting PPIs and further identifying drug targets.

摘要

蛋白质-蛋白质相互作用(PPIs)在许多生物过程中发挥着重要作用。在蛋白质-蛋白质相互作用网络中,枢纽蛋白参与大量的PPIs,可能构成药物靶点的重要来源。结构不稳定的内在无序蛋白(IDPs)可促进枢纽蛋白的多配体性,也参与许多疾病途径,因此它们也可作为潜在的药物靶点。此外,通过基因本体(GO)术语的语义相似性衡量具有相似功能的蛋白质往往会相互作用。在此,基于GO术语和内在无序性探讨了枢纽蛋白与药物靶点之间的关系。提取两种蛋白质之间GO术语和基因的语义相似性以及每种蛋白质的内在无序残基比例作为特征,以表征两种相互作用蛋白质之间的功能相似性。仅使用8个特征变量,构建了支持向量机(SVM)预测模型来预测PPIs。该模型在人类枢纽蛋白的PPI数据上的准确率高达83.72%,与其他具有数百甚至数千个特征的PPI预测模型相比,前景非常广阔。然后,在枢纽蛋白之间的142个PPIs中,有118个被正确预测,即两种相互作用的蛋白质是同一药物的靶点。结果表明,仅8个功能特征就能充分有效地代表PPIs。为了从IDP数据集中识别新的靶点,通过SVM模型预测了枢纽蛋白与IDPs之间的PPIs,该模型的预测准确率为75.84%。进一步的研究证明,在枢纽蛋白与IDPs之间的5个PPIs中,有3个被正确预测,即两种相互作用的蛋白质是同一药物的靶点。所有结果表明,仅具有来自GO术语和内在无序性的8维特征的模型在预测PPIs和进一步识别药物靶点方面仍具有良好的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验