Suppr超能文献

使用监督式机器学习方法预测病毒蛋白与宿主蛋白之间的相互作用。

Prediction of interactions between viral and host proteins using supervised machine learning methods.

作者信息

Barman Ranjan Kumar, Saha Sudipto, Das Santasabuj

机构信息

Biomedical Informatics Centre, National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India.

Bioinformatics Centre, Bose Institute, Kolkata, West Bengal, India.

出版信息

PLoS One. 2014 Nov 6;9(11):e112034. doi: 10.1371/journal.pone.0112034. eCollection 2014.

Abstract

BACKGROUND

Viral-host protein-protein interaction plays a vital role in pathogenesis, since it defines viral infection of the host and regulation of the host proteins. Identification of key viral-host protein-protein interactions (PPIs) has great implication for therapeutics.

METHODS

In this study, a systematic attempt has been made to predict viral-host PPIs by integrating different features, including domain-domain association, network topology and sequence information using viral-host PPIs from VirusMINT. The three well-known supervised machine learning methods, such as SVM, Naïve Bayes and Random Forest, which are commonly used in the prediction of PPIs, were employed to evaluate the performance measure based on five-fold cross validation techniques.

RESULTS

Out of 44 descriptors, best features were found to be domain-domain association and methionine, serine and valine amino acid composition of viral proteins. In this study, SVM-based method achieved better sensitivity of 67% over Naïve Bayes (37.49%) and Random Forest (55.66%). However the specificity of Naïve Bayes was the highest (99.52%) as compared with SVM (74%) and Random Forest (89.08%). Overall, the SVM and Random Forest achieved accuracy of 71% and 72.41%, respectively. The proposed SVM-based method was evaluated on blind dataset and attained a sensitivity of 64%, specificity of 83%, and accuracy of 74%. In addition, unknown potential targets of hepatitis B virus-human and hepatitis E virus-human PPIs have been predicted through proposed SVM model and validated by gene ontology enrichment analysis. Our proposed model shows that, hepatitis B virus "C protein" binds to membrane docking protein, while "X protein" and "P protein" interacts with cell-killing and metabolic process proteins, respectively.

CONCLUSION

The proposed method can predict large scale interspecies viral-human PPIs. The nature and function of unknown viral proteins (HBV and HEV), interacting partners of host protein were identified using optimised SVM model.

摘要

背景

病毒与宿主的蛋白质 - 蛋白质相互作用在发病机制中起着至关重要的作用,因为它决定了病毒对宿主的感染以及宿主蛋白质的调控。鉴定关键的病毒 - 宿主蛋白质 - 蛋白质相互作用(PPI)对治疗具有重要意义。

方法

在本研究中,通过整合不同特征,包括结构域 - 结构域关联、网络拓扑结构和序列信息,利用来自VirusMINT的病毒 - 宿主PPI,系统地尝试预测病毒 - 宿主PPI。采用三种常用于PPI预测的著名监督机器学习方法,即支持向量机(SVM)、朴素贝叶斯和随机森林,基于五折交叉验证技术评估性能指标。

结果

在44个描述符中,发现最佳特征是病毒蛋白的结构域 - 结构域关联以及甲硫氨酸、丝氨酸和缬氨酸的氨基酸组成。在本研究中,基于支持向量机的方法比朴素贝叶斯(37.49%)和随机森林(55.66%)实现了更高的灵敏度,达到67%。然而,与支持向量机(74%)和随机森林(89.08%)相比,朴素贝叶斯的特异性最高(99.52%)。总体而言,支持向量机和随机森林的准确率分别为71%和72.41%。所提出的基于支持向量机的方法在盲数据集上进行评估,灵敏度达到64%,特异性为83%,准确率为74%。此外,通过所提出的支持向量机模型预测了乙型肝炎病毒 - 人与戊型肝炎病毒 - 人的PPI的未知潜在靶点,并通过基因本体富集分析进行了验证。我们提出的模型表明,乙型肝炎病毒“C蛋白”与膜对接蛋白结合,而“X蛋白”和“P蛋白”分别与细胞杀伤和代谢过程蛋白相互作用。

结论

所提出的方法可以预测大规模的种间病毒 - 人PPI。使用优化的支持向量机模型鉴定了未知病毒蛋白(HBV和HEV)的性质和功能以及宿主蛋白的相互作用伙伴。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d52/4223108/4ad5e96549ac/pone.0112034.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验