Espinoza-Fonseca L Michel, Kelekar Ameeta
Department of Biochemistry, Molecular Biology and Biophysics University of Minnesota, Minneapolis, MN 55455, USA.
Mol Biosyst. 2015 Jul;11(7):1850-6. doi: 10.1039/c5mb00170f.
High-resolution characterization of the structure and dynamics of intrinsically disordered proteins (IDPs) remains a challenging task. Consequently, a detailed understanding of the structural and functional features of IDPs remains limited, as very few full-length disordered proteins have been structurally characterized. We have performed microsecond-long molecular dynamics (MD) simulations of Noxa, the smallest member of the large Bcl-2 family of apoptosis regulating proteins, to characterize in atomic-level detail the structural features of a disordered protein. A 2.5 μs MD simulation starting from an unfolded state of the protein revealed the formation of a central antiparallel β-sheet structure flanked by two disordered segments at the N- and C-terminal ends. This topology is in reasonable agreement with protein disorder predictions and available experimental data. We show that this fold plays an essential role in the intracellular function and regulation of Noxa. We demonstrate that unbiased MD simulations in combination with a modern force field reveal structural and functional features of disordered proteins at atomic-level resolution.
对内在无序蛋白质(IDP)的结构和动力学进行高分辨率表征仍然是一项具有挑战性的任务。因此,由于很少有全长无序蛋白质进行过结构表征,对IDP的结构和功能特征的详细了解仍然有限。我们对凋亡调节蛋白大Bcl-2家族中最小的成员Noxa进行了微秒级的分子动力学(MD)模拟,以在原子水平上详细表征无序蛋白质的结构特征。从蛋白质的未折叠状态开始的2.5微秒MD模拟揭示了一个中央反平行β-折叠结构的形成,其两侧是N端和C端的两个无序片段。这种拓扑结构与蛋白质无序预测和现有实验数据合理吻合。我们表明这种折叠在Noxa的细胞内功能和调节中起着至关重要的作用。我们证明,无偏MD模拟与现代力场相结合,可以在原子水平分辨率上揭示无序蛋白质的结构和功能特征。