Colson Brett A, Thompson Andrew R, Espinoza-Fonseca L Michel, Thomas David D
Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455.
Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455
Proc Natl Acad Sci U S A. 2016 Mar 22;113(12):3233-8. doi: 10.1073/pnas.1521281113. Epub 2016 Feb 23.
We have used the site-directed spectroscopies of time-resolved fluorescence resonance energy transfer (TR-FRET) and double electron-electron resonance (DEER), combined with complementary molecular dynamics (MD) simulations, to resolve the structure and dynamics of cardiac myosin-binding protein C (cMyBP-C), focusing on the N-terminal region. The results have implications for the role of this protein in myocardial contraction, with particular relevance to β-adrenergic signaling, heart failure, and hypertrophic cardiomyopathy. N-terminal cMyBP-C domains C0-C2 (C0C2) contain binding regions for potential interactions with both thick and thin filaments. Phosphorylation by PKA in the MyBP-C motif regulates these binding interactions. Our spectroscopic assays detect distances between pairs of site-directed probes on cMyBP-C. We engineered intramolecular pairs of labeling sites within cMyBP-C to measure, with high resolution, the distance and disorder in the protein's flexible regions using TR-FRET and DEER. Phosphorylation reduced the level of molecular disorder and the distribution of C0C2 intramolecular distances became more compact, with probes flanking either the motif between C1 and C2 or the Pro/Ala-rich linker (PAL) between C0 and C1. Further insight was obtained from microsecond MD simulations, which revealed a large structural change in the disordered motif region in which phosphorylation unmasks the surface of a series of residues on a stable α-helix within the motif with high potential as a protein-protein interaction site. These experimental and computational findings elucidate structural transitions in the flexible and dynamic portions of cMyBP-C, providing previously unidentified molecular insight into the modulatory role of this protein in cardiac muscle contractility.
我们运用了时间分辨荧光共振能量转移(TR-FRET)和双电子-电子共振(DEER)的定点光谱技术,并结合互补的分子动力学(MD)模拟,来解析心肌肌球蛋白结合蛋白C(cMyBP-C)的结构与动力学,重点关注其N端区域。这些结果对该蛋白在心肌收缩中的作用具有重要意义,尤其与β-肾上腺素能信号传导、心力衰竭和肥厚型心肌病相关。N端cMyBP-C结构域C0-C2(C0C2)包含与粗细肌丝潜在相互作用的结合区域。MyBP-C基序中蛋白激酶A(PKA)的磷酸化作用调节这些结合相互作用。我们的光谱分析检测了cMyBP-C上定点探针之间的距离。我们在cMyBP-C内部构建了分子内标记位点对,以使用TR-FRET和DEER高分辨率测量该蛋白柔性区域的距离和无序度。磷酸化降低了分子无序水平,C0C2分子内距离的分布变得更加紧密,探针位于C1和C2之间的基序两侧或C0和C1之间富含脯氨酸/丙氨酸的连接子(PAL)两侧。从微秒级MD模拟中获得了进一步的见解,该模拟揭示了无序基序区域的重大结构变化,其中磷酸化使基序内一个稳定α-螺旋上一系列具有高蛋白质-蛋白质相互作用位点潜力的残基表面暴露。这些实验和计算结果阐明了cMyBP-C柔性和动态部分的结构转变,为该蛋白在心肌收缩性中的调节作用提供了此前未被发现的分子见解。