Suppr超能文献

有限元法揭示的微生理系统中贴壁细胞上的细胞形状依赖性剪切应力

Cell shape-dependent shear stress on adherent cells in a micro-physiologic system as revealed by FEM.

作者信息

Pfister C, Bozsak C, Wolf P, Demmel F, Brischwein M

机构信息

Heinz Nixdorf-Lehrstuhl für Medizinische Elektronik, Technische Universität München, Theresienstraß e 90, 80333 Munich, Germany. HP Medizintechnik GmbH, Bruckmannring 19, 85764 Oberschleißheim, Germany.

出版信息

Physiol Meas. 2015 May;36(5):955-66. doi: 10.1088/0967-3334/36/5/955. Epub 2015 Apr 9.

Abstract

Flow-induced shear stress on adherent cells leads to biochemical signaling and mechanical responses of the cells. To determine the flow-induced shear stress on adherent cells cultured in a micro-scaled reaction chamber, we developed a suitable finite element method model. The influence of the most important parameters-cell shape, cell density, shear modulus and fluid velocity-was investigated. Notably, the cell shape strongly influences the resulting shear stress. Long and smooth cells undergo lower shear stress than more rounded cells. Changes in the curvature of the cells lead to stress peaks and single cells experience higher shear stress values than cells of a confluent monolayer. The computational results of the fluid flow simulation were validated experimentally. We also analyzed the influence of flow-induced shear stress on the metabolic activity and shape of L929, a mouse fibroblast cell line, experimentally. The results indicate that threshold stress values for continuous flow conditions cannot be transferred to quasi static flow conditions interrupted by short fluid exchange events.

摘要

作用于贴壁细胞上的流动诱导剪应力会引发细胞的生化信号传导和机械反应。为了确定在微尺度反应腔中培养的贴壁细胞上的流动诱导剪应力,我们开发了一个合适的有限元方法模型。研究了最重要的参数——细胞形状、细胞密度、剪切模量和流体速度——的影响。值得注意的是,细胞形状对产生的剪应力有很大影响。长而光滑的细胞所承受的剪应力低于更圆润的细胞。细胞曲率的变化会导致应力峰值,单个细胞比汇合单层细胞承受更高的剪应力值。流体流动模拟的计算结果通过实验得到了验证。我们还通过实验分析了流动诱导剪应力对小鼠成纤维细胞系L929的代谢活性和形状的影响。结果表明,连续流动条件下的阈值应力值不能转换为准静态流动条件下被短暂流体交换事件中断的情况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验