Suppr超能文献

持续反馈过程中的错误相关电位:利用脑电图检测不同类型和严重程度的错误。

Error-related potentials during continuous feedback: using EEG to detect errors of different type and severity.

作者信息

Spüler Martin, Niethammer Christian

机构信息

Computer Science Department, University of Tübingen Tübingen, Germany.

出版信息

Front Hum Neurosci. 2015 Mar 26;9:155. doi: 10.3389/fnhum.2015.00155. eCollection 2015.

Abstract

When a person recognizes an error during a task, an error-related potential (ErrP) can be measured as response. It has been shown that ErrPs can be automatically detected in tasks with time-discrete feedback, which is widely applied in the field of Brain-Computer Interfaces (BCIs) for error correction or adaptation. However, there are only a few studies that concentrate on ErrPs during continuous feedback. With this study, we wanted to answer three different questions: (i) Can ErrPs be measured in electroencephalography (EEG) recordings during a task with continuous cursor control? (ii) Can ErrPs be classified using machine learning methods and is it possible to discriminate errors of different origins? (iii) Can we use EEG to detect the severity of an error? To answer these questions, we recorded EEG data from 10 subjects during a video game task and investigated two different types of error (execution error, due to inaccurate feedback; outcome error, due to not achieving the goal of an action). We analyzed the recorded data to show that during the same task, different kinds of error produce different ErrP waveforms and have a different spectral response. This allows us to detect and discriminate errors of different origin in an event-locked manner. By utilizing the error-related spectral response, we show that also a continuous, asynchronous detection of errors is possible. Although the detection of error severity based on EEG was one goal of this study, we did not find any significant influence of the severity on the EEG.

摘要

当一个人在执行任务过程中识别出错误时,与之相关的错误相关电位(ErrP)可作为一种反应被测量出来。研究表明,在具有时间离散反馈的任务中可以自动检测到ErrP,这种反馈在脑机接口(BCI)领域中被广泛应用于错误纠正或自适应调整。然而,仅有少数研究关注连续反馈过程中的ErrP。在本研究中,我们想要回答三个不同的问题:(i)在具有连续光标控制的任务中,能否从脑电图(EEG)记录中测量出ErrP?(ii)能否使用机器学习方法对ErrP进行分类,以及是否有可能区分不同来源的错误?(iii)我们能否利用EEG检测错误的严重程度?为了回答这些问题,我们在一个视频游戏任务中记录了10名受试者的EEG数据,并研究了两种不同类型的错误(执行错误,由于反馈不准确;结果错误,由于未达成动作目标)。我们对记录的数据进行分析,结果表明在同一任务中,不同类型的错误会产生不同的ErrP波形,并且具有不同的频谱响应。这使我们能够以事件锁定的方式检测和区分不同来源的错误。通过利用与错误相关的频谱响应,我们表明也可以进行连续、异步的错误检测。尽管基于EEG检测错误严重程度是本研究的一个目标,但我们并未发现严重程度对EEG有任何显著影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bdc/4374466/94748604fda3/fnhum-09-00155-g0001.jpg

相似文献

1
Error-related potentials during continuous feedback: using EEG to detect errors of different type and severity.
Front Hum Neurosci. 2015 Mar 26;9:155. doi: 10.3389/fnhum.2015.00155. eCollection 2015.
3
Masked and unmasked error-related potentials during continuous control and feedback.
J Neural Eng. 2018 Jun;15(3):036031. doi: 10.1088/1741-2552/aab806. Epub 2018 Mar 20.
4
Development of a robust asynchronous brain-switch using ErrP-based error correction.
J Neural Eng. 2019 Nov 11;16(6):066042. doi: 10.1088/1741-2552/ab4943.
5
A functional source separation algorithm to enhance error-related potentials monitoring in noninvasive brain-computer interface.
Comput Methods Programs Biomed. 2020 Jul;191:105419. doi: 10.1016/j.cmpb.2020.105419. Epub 2020 Feb 27.
6
Towards error categorisation in BCI: single-trial EEG classification between different errors.
J Neural Eng. 2019 Dec 11;17(1):016008. doi: 10.1088/1741-2552/ab53fe.
8
Towards the Classification of Error-Related Potentials using Riemannian Geometry.
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:5905-5908. doi: 10.1109/EMBC46164.2021.9629583.
9
Detection of tactile-based error-related potentials (ErrPs) in human-robot interaction.
Front Neurorobot. 2023 Dec 12;17:1297990. doi: 10.3389/fnbot.2023.1297990. eCollection 2023.
10

引用本文的文献

1
Hybrid brain-computer interface using error-related potential and reinforcement learning.
Front Hum Neurosci. 2025 Jun 4;19:1569411. doi: 10.3389/fnhum.2025.1569411. eCollection 2025.
2
Real-Time Mobile Robot Obstacles Detection and Avoidance Through EEG Signals.
Brain Sci. 2025 Mar 30;15(4):359. doi: 10.3390/brainsci15040359.
3
Evaluating robotic actions: spatiotemporal brain dynamics of performance assessment in robot-assisted laparoscopic training.
Front Neuroergon. 2025 Feb 19;6:1535799. doi: 10.3389/fnrgo.2025.1535799. eCollection 2025.
4
Decoding the brain-machine interaction for upper limb assistive technologies: advances and challenges.
Front Hum Neurosci. 2025 Feb 6;19:1532783. doi: 10.3389/fnhum.2025.1532783. eCollection 2025.
5
Response coupling with an auxiliary neural signal for enhancing brain signal detection.
Sci Rep. 2025 Feb 20;15(1):6227. doi: 10.1038/s41598-025-87414-9.
8
A generic error-related potential classifier based on simulated subjects.
Front Hum Neurosci. 2024 Jul 17;18:1390714. doi: 10.3389/fnhum.2024.1390714. eCollection 2024.
9
A deep neural network and transfer learning combined method for cross-task classification of error-related potentials.
Front Hum Neurosci. 2024 Jun 12;18:1394107. doi: 10.3389/fnhum.2024.1394107. eCollection 2024.

本文引用的文献

1
Errare machinale est: the use of error-related potentials in brain-machine interfaces.
Front Neurosci. 2014 Jul 22;8:208. doi: 10.3389/fnins.2014.00208. eCollection 2014.
2
Frontal theta as a mechanism for cognitive control.
Trends Cogn Sci. 2014 Aug;18(8):414-21. doi: 10.1016/j.tics.2014.04.012. Epub 2014 May 15.
3
Neural mechanisms and temporal dynamics of performance monitoring.
Trends Cogn Sci. 2014 May;18(5):259-67. doi: 10.1016/j.tics.2014.02.009. Epub 2014 Mar 19.
4
Using frequency-domain features for the generalization of EEG error-related potentials among different tasks.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:5263-6. doi: 10.1109/EMBC.2013.6610736.
5
Task-dependent signal variations in EEG error-related potentials for brain-computer interfaces.
J Neural Eng. 2013 Apr;10(2):026024. doi: 10.1088/1741-2560/10/2/026024. Epub 2013 Mar 26.
6
Detection of error related neuronal responses recorded by electrocorticography in humans during continuous movements.
PLoS One. 2013;8(2):e55235. doi: 10.1371/journal.pone.0055235. Epub 2013 Feb 1.
7
Online adaptation of a c-VEP Brain-computer Interface(BCI) based on error-related potentials and unsupervised learning.
PLoS One. 2012;7(12):e51077. doi: 10.1371/journal.pone.0051077. Epub 2012 Dec 7.
8
Unsupervised adaptation of brain-machine interface decoders.
Front Neurosci. 2012 Nov 16;6:164. doi: 10.3389/fnins.2012.00164. eCollection 2012.
9
Online detection of error-related potentials boosts the performance of mental typewriters.
BMC Neurosci. 2012 Feb 15;13:19. doi: 10.1186/1471-2202-13-19.
10
Error-related electrocorticographic activity in humans during continuous movements.
J Neural Eng. 2012 Apr;9(2):026007. doi: 10.1088/1741-2560/9/2/026007. Epub 2012 Feb 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验