Argente-Arizón Pilar, Freire-Regatillo Alejandra, Argente Jesús, Chowen Julie A
Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa , Madrid , Spain ; Department of Pediatrics, Universidad Autónoma de Madrid , Madrid , Spain ; Fisiopatología de la Obesidad y Nutrición (CIBERobn), Centros de Investigación Biomédica en Red, Instituto de Salud Carlos III , Madrid , Spain.
Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa , Madrid , Spain ; Fisiopatología de la Obesidad y Nutrición (CIBERobn), Centros de Investigación Biomédica en Red, Instituto de Salud Carlos III , Madrid , Spain.
Front Endocrinol (Lausanne). 2015 Mar 26;6:42. doi: 10.3389/fendo.2015.00042. eCollection 2015.
The brain is composed of neurons and non-neuronal cells, with the latter encompassing glial, ependymal and endothelial cells, as well as pericytes and progenitor cells. Studies aimed at understanding how the brain operates have traditionally focused on neurons, but the importance of non-neuronal cells has become increasingly evident. Once relegated to supporting roles, it is now indubitable that these diverse cell types are fundamental for brain development and function, including that of metabolic circuits, and they may play a significant role in obesity onset and complications. They participate in processes of neurogenesis, synaptogenesis, and synaptic plasticity of metabolic circuits both during development and in adulthood. Some glial cells, such as tanycytes and astrocytes, transport circulating nutrients and metabolic factors that are fundamental for neuronal viability and activity into and within the hypothalamus. All of these cell types express receptors for a variety of metabolic factors and hormones, suggesting that they participate in metabolic function. They are the first line of defense against any assault to neurons. Indeed, microglia and astrocytes participate in the hypothalamic inflammatory response to high fat diet (HFD)-induced obesity, with this process contributing to inflammatory-related insulin and leptin resistance. Moreover, HFD-induced obesity and hyperleptinemia modify hypothalamic astroglial morphology, which is associated with changes in the synaptic inputs to neuronal metabolic circuits. Astrocytic contact with the microvasculature is increased by HFD intake and this could modify nutrient/hormonal uptake into the brain. In addition, progenitor cells in the hypothalamus are now known to have the capacity to renew metabolic circuits, and this can be affected by HFD intake and obesity. Here, we discuss our current understanding of how non-neuronal cells participate in physiological and physiopathological metabolic control.
大脑由神经元和非神经元细胞组成,后者包括神经胶质细胞、室管膜细胞和内皮细胞,以及周细胞和祖细胞。旨在了解大脑如何运作的研究传统上一直集中在神经元上,但非神经元细胞的重要性已变得越来越明显。这些细胞类型曾经被认为只起支持作用,现在毫无疑问的是,它们对于大脑发育和功能(包括代谢回路的发育和功能)至关重要,并且它们可能在肥胖的发生和并发症中起重要作用。它们在发育过程和成年期都参与代谢回路的神经发生、突触形成和突触可塑性过程。一些神经胶质细胞,如伸长细胞和星形胶质细胞,将对神经元生存能力和活动至关重要的循环营养物质和代谢因子运输到下丘脑内并在其中运输。所有这些细胞类型都表达多种代谢因子和激素的受体,这表明它们参与代谢功能。它们是抵御对神经元的任何攻击的第一道防线。事实上,小胶质细胞和星形胶质细胞参与了对高脂饮食(HFD)诱导的肥胖的下丘脑炎症反应,这一过程导致了与炎症相关的胰岛素和瘦素抵抗。此外,HFD诱导的肥胖和高瘦素血症会改变下丘脑星形胶质细胞的形态,这与神经元代谢回路的突触输入变化有关。HFD摄入会增加星形胶质细胞与微血管的接触,这可能会改变营养物质/激素进入大脑的过程。此外,现在已知下丘脑的祖细胞具有更新代谢回路的能力,这可能会受到HFD摄入和肥胖的影响。在这里,我们讨论了我们目前对非神经元细胞如何参与生理和病理生理代谢控制的理解。