Freire-Regatillo Alejandra, Argente-Arizón Pilar, Argente Jesús, García-Segura Luis Miguel, Chowen Julie A
Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain; Department of Pediatrics, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain.
Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain; Department of Pediatrics, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain; IMDEA Food Institute, Campus of International Excellence (CEI) UAM + CSIC, Madrid, Spain.
Front Endocrinol (Lausanne). 2017 Mar 21;8:51. doi: 10.3389/fendo.2017.00051. eCollection 2017.
Although the brain is composed of numerous cell types, neurons have received the vast majority of attention in the attempt to understand how this organ functions. Neurons are indeed fundamental but, in order for them to function correctly, they rely on the surrounding "non-neuronal" cells. These different cell types, which include glia, epithelial cells, pericytes, and endothelia, supply essential substances to neurons, in addition to protecting them from dangerous substances and situations. Moreover, it is now clear that non-neuronal cells can also actively participate in determining neuronal signaling outcomes. Due to the increasing problem of obesity in industrialized countries, investigation of the central control of energy balance has greatly increased in attempts to identify new therapeutic targets. This has led to interesting advances in our understanding of how appetite and systemic metabolism are modulated by non-neuronal cells. For example, not only are nutrients and hormones transported into the brain by non-neuronal cells, but these cells can also metabolize these metabolic factors, thus modifying the signals reaching the neurons. The hypothalamus is the main integrating center of incoming metabolic and hormonal signals and interprets this information in order to control appetite and systemic metabolism. Hence, the factors transported and released from surrounding non-neuronal cells will undoubtedly influence metabolic homeostasis. This review focuses on what is known to date regarding the involvement of different cell types in the transport and metabolism of nutrients and hormones in the hypothalamus. The possible involvement of non-neuronal cells, in particular glial cells, in physiopathological outcomes of poor dietary habits and excess weight gain are also discussed.
尽管大脑由多种细胞类型组成,但在试图理解这个器官如何运作的过程中,神经元受到了绝大多数的关注。神经元确实是基础,但为了使其正常运作,它们依赖于周围的“非神经元”细胞。这些不同的细胞类型,包括神经胶质细胞、上皮细胞、周细胞和内皮细胞,除了保护神经元免受有害物质和危险情况的侵害外,还为神经元提供必需的物质。此外,现在很清楚,非神经元细胞也可以积极参与决定神经元信号传导的结果。由于工业化国家肥胖问题日益严重,对能量平衡中枢控制的研究大幅增加,试图确定新的治疗靶点。这在我们对非神经元细胞如何调节食欲和全身代谢的理解上带来了有趣的进展。例如,不仅营养物质和激素由非神经元细胞转运到大脑中,而且这些细胞还可以代谢这些代谢因子,从而改变到达神经元的信号。下丘脑是传入代谢和激素信号的主要整合中心,并解读这些信息以控制食欲和全身代谢。因此,从周围非神经元细胞转运和释放的因子无疑会影响代谢稳态。本综述重点关注目前已知的不同细胞类型在下丘脑营养物质和激素的转运与代谢中的作用。还讨论了非神经元细胞,特别是神经胶质细胞,在不良饮食习惯和体重过度增加的生理病理结果中的可能作用。