He Fei, Nie Wen-Chao, Tong Zongtian, Yuan Si-Min, Gong Ting, Liao Yuan, Bi Erfei, Gao Xiang-Dong
Department of Microbiology, College of Life Sciences, Wuhan University, Wuhan, China.
Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America.
PLoS One. 2015 Apr 10;10(4):e0123326. doi: 10.1371/journal.pone.0123326. eCollection 2015.
In budding yeast, Rga1 negatively regulates the Rho GTPase Cdc42 by acting as a GTPase-activating protein (GAP) for Cdc42. To gain insight into the function and regulation of Rga1, we overexpressed Rga1 and an N-terminally truncated Rga1-C538 (a.a. 538-1007) segment. Overexpression of Rga1-C538 but not full-length Rga1 severely impaired growth and cell morphology in wild-type cells. We show that Rga1 is phosphorylated during the cell cycle. The lack of phenotype for full-length Rga1 upon overexpression may result from a negative regulation by G1-specific Pho85, a cyclin-dependent kinase (CDK). From a high-copy suppressor screen, we isolated RHO3, SEC9, SEC1, SSO1, SSO2, and SRO7, genes involved in exocytosis, as suppressors of the growth defect caused by Rga1-C538 overexpression. Moreover, we detected that Rga1 interacts with Rho3 in two-hybrid and bimolecular fluorescence complementation (BiFC) assays. Rga1 preferentially interacts with the GTP-bound form of Rho3 and the interaction requires the GAP domain and additional sequence upstream of the GAP domain. Our data suggest that the interaction of Rga1 with Rho3 may regulate Rho3's function in polarized bud growth.
在出芽酵母中,Rga1作为Cdc42的GTP酶激活蛋白(GAP)对Rho GTP酶Cdc42进行负调控。为深入了解Rga1的功能和调控机制,我们过表达了Rga1以及N端截短的Rga1-C538(氨基酸538 - 1007)片段。Rga1-C538而非全长Rga1的过表达严重损害了野生型细胞的生长和细胞形态。我们发现Rga1在细胞周期中会发生磷酸化。全长Rga1过表达时缺乏表型可能是由于G1期特异性的Pho85(一种细胞周期蛋白依赖性激酶,CDK)的负调控所致。通过高拷贝抑制子筛选,我们分离出了RHO3、SEC9、SEC1、SSO1、SSO2和SRO7,这些参与胞吐作用的基因可作为Rga1-C538过表达所导致生长缺陷的抑制子。此外,我们在双杂交和双分子荧光互补(BiFC)实验中检测到Rga1与Rho3相互作用。Rga1优先与GTP结合形式的Rho3相互作用,且这种相互作用需要GAP结构域以及GAP结构域上游的额外序列。我们的数据表明,Rga1与Rho3的相互作用可能会调节Rho3在极化芽生长中的功能。