Bowles Joseph, Hirsch Flavien, Quintino Marco Túlio, Brunner Nicolas
Département de Physique Théorique, Université de Genève, 1211 Genève, Switzerland.
Phys Rev Lett. 2015 Mar 27;114(12):120401. doi: 10.1103/PhysRevLett.114.120401. Epub 2015 Mar 24.
The statistics of local measurements performed on certain entangled states can be reproduced using a local hidden variable (LHV) model. While all known models make use of an infinite amount of shared randomness, we show that essentially all entangled states admitting a LHV model can be simulated with finite shared randomness. Our most economical model simulates noisy two-qubit Werner states using only log_{2}(12)≃3.58 bits of shared randomness. We also discuss the case of positive operator valued measures, and the simulation of nonlocal states with finite shared randomness and finite communication. Our work represents a first step towards quantifying the cost of LHV models for entangled quantum states.
对某些纠缠态进行的局部测量统计可以使用局部隐变量(LHV)模型来重现。虽然所有已知模型都利用了无限量的共享随机性,但我们表明,基本上所有允许LHV模型的纠缠态都可以用有限的共享随机性来模拟。我们最经济的模型仅使用log₂(12)≃3.58比特的共享随机性来模拟有噪声的两比特Werner态。我们还讨论了正算子值测量的情况,以及用有限共享随机性和有限通信对非局域态的模拟。我们的工作代表了朝着量化纠缠量子态的LHV模型成本迈出的第一步。