Duke Center for Genomic and Computational Biology, Duke University , Durham, NC , USA.
Duke Center for Genomic and Computational Biology, Duke University , Durham, NC , USA ; Nicholas School of the Environment, Duke University , Durham, NC , USA.
PeerJ. 2015 Apr 2;3:e881. doi: 10.7717/peerj.881. eCollection 2015.
Stable associations between bacterial endosymbionts and insect hosts provide opportunities to explore genome evolution in the context of established mutualisms and assess the roles of selection and genetic drift across host lineages and habitats. Blochmannia, obligate endosymbionts of ants of the tribe Camponotini, have coevolved with their ant hosts for ∼40 MY. To investigate early events in Blochmannia genome evolution across this ant host tribe, we sequenced Blochmannia from two divergent host lineages, Colobopsis obliquus and Polyrhachis turneri, and compared them with four published genomes from Blochmannia of Camponotus sensu stricto. Reconstructed gene content of the last common ancestor (LCA) of these six Blochmannia genomes is reduced (690 protein coding genes), consistent with rapid gene loss soon after establishment of the symbiosis. Differential gene loss among Blochmannia lineages has affected cellular functions and metabolic pathways, including DNA replication and repair, vitamin biosynthesis and membrane proteins. Blochmannia of P. turneri (i.e., B. turneri) encodes an intact DnaA chromosomal replication initiation protein, demonstrating that loss of dnaA was not essential for establishment of the symbiosis. Based on gene content, B. obliquus and B. turneri are unable to provision hosts with riboflavin. Of the six sequenced Blochmannia, B. obliquus is the earliest diverging lineage (i.e., the sister group of other Blochmannia sampled) and encodes the fewest protein-coding genes and the most pseudogenes. We identified 55 genes involved in parallel gene loss, including glutamine synthetase, which may participate in nitrogen recycling. Pathways for biosynthesis of coenzyme A, terpenoids and riboflavin were lost in multiple lineages, suggesting relaxed selection on the pathway after inactivation of one component. Analysis of Illumina read datasets did not detect evidence of plasmids encoding missing functions, nor the presence of coresident symbionts other than Wolbachia. Although gene order is strictly conserved in four Blochmannia of Camponotus sensu stricto, comparisons with deeply divergent lineages revealed inversions in eight genomic regions, indicating ongoing recombination despite ancestral loss of recA. In sum, the addition of two Blochmannia genomes of divergent host lineages enables reconstruction of early events in evolution of this symbiosis and suggests that Blochmannia lineages may experience distinct, host-associated selective pressures. Understanding how evolutionary forces shape genome reduction in this system may help to clarify forces driving gene loss in other bacteria, including intracellular pathogens.
稳定的细菌内共生体与昆虫宿主之间的联系为探索已建立的互利共生关系中的基因组进化以及评估选择和遗传漂变在宿主谱系和栖息地中的作用提供了机会。Blochmannia 是 Camponotini 蚂蚁的专性内共生体,与它们的蚂蚁宿主共同进化了大约 4000 万年。为了研究 Blochmannia 在这个蚂蚁宿主部落中的早期基因组进化事件,我们对两种不同的宿主谱系 Colobopsis obliquus 和 Polyrhachis turneri 的 Blochmannia 进行了测序,并将它们与来自 Camponotus sensu stricto 的 Blochmannia 的四个已发表基因组进行了比较。这六个 Blochmannia 基因组的最后共同祖先 (LCA) 的重建基因含量减少了(690 个蛋白质编码基因),这与共生关系建立后不久的快速基因丢失一致。Blochmannia 谱系之间的差异基因丢失影响了细胞功能和代谢途径,包括 DNA 复制和修复、维生素生物合成和膜蛋白。P. turneri 的 Blochmannia(即 B. turneri)编码完整的 DnaA 染色体复制起始蛋白,表明 dnaA 的丢失对于共生关系的建立并非必不可少。基于基因含量,B. obliquus 和 B. turneri 无法为宿主提供核黄素。在测序的六个 Blochmannia 中,B. obliquus 是最早分化的谱系(即其他 Blochmannia 采样的姐妹群),编码的蛋白质编码基因最少,假基因最多。我们确定了 55 个参与平行基因丢失的基因,包括谷氨酰胺合成酶,它可能参与氮循环。多个谱系中丢失了辅酶 A、萜类化合物和核黄素生物合成途径,表明在一个成分失活后,该途径的选择压力放松。对 Illumina 读取数据集的分析并未检测到编码缺失功能的质粒的证据,也未检测到除 Wolbachia 以外的核心共生体的存在。尽管四个 Camponotus sensu stricto 的 Blochmannia 中的基因顺序严格保守,但与深度分化的谱系进行比较显示,八个基因组区域发生了反转,表明尽管祖先失去了 recA,但仍在继续重组。总之,两个来自不同宿主谱系的 Blochmannia 基因组的添加使我们能够重建这种共生关系的早期进化事件,并表明 Blochmannia 谱系可能经历不同的、与宿主相关的选择压力。了解进化力量如何塑造该系统中的基因组减少可能有助于阐明其他细菌(包括细胞内病原体)中基因丢失的驱动因素。