Department of Computer Science, Chemnitz University of Technology, Strasse der Nationen 62, 09107 Chemnitz, Germany.
Department of Computer Science, Chemnitz University of Technology, Strasse der Nationen 62, 09107 Chemnitz, Germany.
Neural Netw. 2015 Jul;67:1-13. doi: 10.1016/j.neunet.2015.03.002. Epub 2015 Mar 24.
We introduce a spiking neural network of the basal ganglia capable of learning stimulus-action associations. We model learning in the three major basal ganglia pathways, direct, indirect and hyperdirect, by spike time dependent learning and considering the amount of dopamine available (reward). Moreover, we allow to learn a cortico-thalamic pathway that bypasses the basal ganglia. As a result the system develops new functionalities for the different basal ganglia pathways: The direct pathway selects actions by disinhibiting the thalamus, the hyperdirect one suppresses alternatives and the indirect pathway learns to inhibit common mistakes. Numerical experiments show that the system is capable of learning sets of either deterministic or stochastic rules.
我们引入了一个能够学习刺激-反应关联的基底神经节尖峰神经网络。我们通过基于尖峰时间的学习和考虑多巴胺(奖励)的可用性来模拟直接、间接和超直接三条主要基底神经节通路的学习。此外,我们允许学习一条绕过基底神经节的皮质-丘脑通路。结果,该系统为不同的基底神经节通路开发了新的功能:直接通路通过抑制丘脑来选择动作,超直接通路抑制替代物,间接通路学会抑制常见错误。数值实验表明,该系统能够学习确定性或随机规则的集合。