Yang Liming, Xue Xingjian, Xie Kui
School of Materials Science and Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei, Anhui 230009, China.
Phys Chem Chem Phys. 2015 May 7;17(17):11705-14. doi: 10.1039/c4cp06125j.
In this study, a potential ilmenite cathode material Ni0.9TiO3 is designed for efficient CO2 electrolysis in an oxide-ion-conducting solid-oxide electrolyzer. Spatially confined catalysis has been successfully achieved to substantially improve cathode activity by in situ growth of catalytically active nickel nanoparticles on a ceramic skeleton. The combined analysis of XRD, SEM, EDS, XPS, TGA and Raman results together confirm that the growth of nickel catalyst is completely reversible in redox cycles. The n-type electrical properties of cathodes are systematically investigated and correlated to electrochemical performance. Efficient CO2 electrolysis with a Faraday efficiency above 90% has been demonstrated with Ni0.9TiO3 in contrast to 60% for a TiO2 cathode at 800 °C.
在本研究中,设计了一种潜在的钛铁矿阴极材料Ni0.9TiO3,用于在氧化物离子传导固体氧化物电解槽中进行高效二氧化碳电解。通过在陶瓷骨架上原位生长具有催化活性的镍纳米颗粒,成功实现了空间受限催化,从而大幅提高了阴极活性。XRD、SEM、EDS、XPS、TGA和拉曼结果的综合分析共同证实,镍催化剂的生长在氧化还原循环中是完全可逆的。系统研究了阴极的n型电学性质,并将其与电化学性能相关联。在800℃下,Ni0.9TiO3实现了法拉第效率高于90%的高效二氧化碳电解,相比之下,TiO2阴极的法拉第效率为60%。