Suppr超能文献

用于 CO2 固体氧化物电解池的高活性和氧化还原稳定的 Ce 掺杂 LaSrCrFeO 基阴极催化剂。

Highly Active and Redox-Stable Ce-Doped LaSrCrFeO-Based Cathode Catalyst for CO2 SOECs.

机构信息

Department of Chemical and Materials Engineering, University of Alberta , Alberta, Canada , T6G 1H9.

National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen, China , 361005.

出版信息

ACS Appl Mater Interfaces. 2016 Mar;8(10):6457-63. doi: 10.1021/acsami.5b11979. Epub 2016 Mar 1.

Abstract

Lanthanum chromate-based perovskite oxides have attracted great attention as the cathode materials in the high-temperature CO2 electrolysis because of its good redox stability. However, the unsatisfied electrochemical catalytic activity and insufficient adsorption of CO2 at operating temperature still hindered the further improvement of electrochemical performance and the Faraday efficiency of the electrolysis cell. In this work, the catalytic and redox active Ce was doped into A site of La0.7Sr0.3Cr0.5Fe0.5O3-δ (LSCrF) to promote the catalytic performance, and to introduce oxygen vacancies in the lattice in situ after reduction under the operational condition. The increased amount of oxygen vacancies not only facilitates the mobility of oxygen ions, but also provides favorable accommodation for chemical adsorption of CO2. The CO2 electrolysis tests demonstrated the superior electrochemical performances, higher Faraday efficiencies of the Ce-doped LSCrF cathode catalyst in comparison with that without Ce doping, indicating the perspective application of this functional material.

摘要

基于铬酸镧的钙钛矿氧化物作为高温 CO2 电解的阴极材料引起了极大的关注,因为它具有良好的氧化还原稳定性。然而,在操作温度下,其电化学催化活性的不足和对 CO2 的吸附不足仍然阻碍了进一步提高电解槽的电化学性能和法拉第效率。在这项工作中,将具有催化和氧化还原活性的 Ce 掺杂到 La0.7Sr0.3Cr0.5Fe0.5O3-δ(LSCrF)的 A 位,以提高其催化性能,并在操作条件下还原时原位引入晶格中的氧空位。增加的氧空位不仅有利于氧离子的迁移,而且为 CO2 的化学吸附提供了有利的空间。CO2 电解测试表明,与未掺杂 Ce 的 LSCrF 阴极催化剂相比,Ce 掺杂的 LSCrF 阴极催化剂具有更优越的电化学性能和更高的法拉第效率,表明该功能材料具有广阔的应用前景。

相似文献

8
Achieving Highly Efficient Carbon Dioxide Electrolysis by Construction of the Heterostructure.通过构建异质结构实现高效二氧化碳电解
ACS Appl Mater Interfaces. 2021 May 5;13(17):20060-20069. doi: 10.1021/acsami.1c02146. Epub 2021 Apr 22.

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验