Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124 (P.R. China).
Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, College of Engineering, Peking University, Beijing 100871 (P.R. China).
Angew Chem Int Ed Engl. 2015 May 26;54(22):6452-6. doi: 10.1002/anie.201411917. Epub 2015 Apr 9.
Sodium-ion batteries are a very promising alternative to lithium-ion batteries because of their reliance on an abundant supply of sodium salts, environmental benignity, and low cost. However, the low rate capability and poor long-term stability still hinder their practical application. A cathode material, formed of RuO2 -coated Na3 V2 O2 (PO4 )2 F nanowires, has a 50 nm diameter with the space group of I4/mmm. When used as a cathode material for Na-ion batteries, a reversible capacity of 120 mAh g(-1) at 1 C and 95 mAh g(-1) at 20 C can be achieved after 1000 charge-discharge cycles. The ultrahigh rate capability and enhanced cycling stability are comparable with high performance lithium cathodes. Combining first principles computational investigation with experimental observations, the excellent performance can be attributed to the uniform and highly conductive RuO2 coating and the preferred growth of the (002) plane in the Na3 V2 O2 (PO4 )2 F nanowires.
钠离子电池作为锂离子电池的替代品具有广阔的应用前景,这是因为它们依赖于丰富的钠盐供应、环境友好性和低成本。然而,低倍率性能和较差的长期稳定性仍然阻碍了它们的实际应用。一种由 RuO2 涂层 Na3 V2 O2 (PO4 )2 F 纳米线组成的正极材料,其直径为 50nm,空间群为 I4/mmm。将其用作钠离子电池的正极材料,在 1C 时的可逆容量为 120mAh·g(-1),在 20C 时的可逆容量为 95mAh·g(-1),经过 1000 次充放电循环后仍能保持。超高倍率性能和增强的循环稳定性可与高性能的锂离子正极相媲美。通过第一性原理计算研究与实验观察相结合,优异的性能归因于均匀且高导电性的 RuO2 涂层以及 Na3 V2 O2 (PO4 )2 F 纳米线中(002)面的择优生长。