Suppr超能文献

一种基于Na3V2(PO4)3的纳米复合材料,通过氮掺杂包覆碳和石墨烯增强,用作钠离子电池的阴极。

A Superior Na3 V2 (PO4 )3 -Based Nanocomposite Enhanced by Both N-Doped Coating Carbon and Graphene as the Cathode for Sodium-Ion Batteries.

作者信息

Guo Jin-Zhi, Wu Xing-Long, Wan Fang, Wang Jie, Zhang Xiao-Hua, Wang Rong-Shun

机构信息

National and Local United Engineering Laboratory for Power Batteries and Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024 (P. R. China).

出版信息

Chemistry. 2015 Nov 23;21(48):17371-8. doi: 10.1002/chem.201502583. Epub 2015 Oct 20.

Abstract

A superior Na3 V2 (PO4 )3 -based nanocomposite (NVP/C/rGO) has been successfully developed by a facile carbothermal reduction method using one most-common chelator, disodium ethylenediamintetraacetate [Na2 (C10 H16 N2 O8 )], as both sodium and nitrogen-doped carbon sources for the first time. 2D-reduced graphene oxide (rGO) nanosheets are also employed as highly conductive additives to facilitate the electrical conductivity and limit the growth of NVP nanoparticles. When used as the cathode material for sodium-ion batteries, the NVP/C/rGO nanocomposite exhibits the highest discharge capacity, the best high-rate capabilities and prolonged cycling life compared to the pristine NVP and single-carbon-modified NVP/C. Specifically, the 0.1 C discharge capacity delivered by the NVP/C/rGO is 116.8 mAh g(-1) , which is obviously higher than 106 and 112.3 mAh g(-1) for the NVP/C and pristine NVP respectively; it can still deliver a specific capacity of about 80 mAh g(-1) even at a high rate up to 30 C; and its capacity decay is as low as 0.0355 % per cycle when cycled at 0.2 C. Furthermore, the electrochemical impedance spectroscopy was also implemented to compare the electrode kinetics of all three NVP-based cathodes including the apparent Na diffusion coefficients and charge-transfer resistances.

摘要

一种优异的基于Na3V2(PO4)3的纳米复合材料(NVP/C/rGO)首次通过一种简便的碳热还原法成功制备,该方法使用一种最常见的螯合剂乙二胺四乙酸二钠[Na2(C10H16N2O8)]作为钠和氮掺杂碳源。二维还原氧化石墨烯(rGO)纳米片也被用作高导电添加剂,以促进导电性并限制NVP纳米颗粒的生长。当用作钠离子电池的阴极材料时,与原始NVP和单碳改性的NVP/C相比,NVP/C/rGO纳米复合材料表现出最高的放电容量、最佳的高倍率性能和延长的循环寿命。具体而言,NVP/C/rGO在0.1C下的放电容量为116.8 mAh g(-1),明显高于NVP/C和原始NVP的106和112.3 mAh g(-1);即使在高达30C的高倍率下,它仍能提供约80 mAh g(-1)的比容量;在0.2C下循环时,其容量衰减低至每循环0.0355%。此外,还进行了电化学阻抗谱分析,以比较所有三种基于NVP的阴极的电极动力学,包括表观Na扩散系数和电荷转移电阻。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验