Suppr超能文献

双胞胎研究的快速表达数量性状基因座分析

Fast eQTL Analysis for Twin Studies.

作者信息

Yin Zhaoyu, Xia Kai, Chung Wonil, Sullivan Patrick F, Zou Fei

机构信息

Department of Biostatistics, University of North Carolina, Chapel Hill, North, Carolina, United States of America.

Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina, United States of America.

出版信息

Genet Epidemiol. 2015 Jul;39(5):357-65. doi: 10.1002/gepi.21900. Epub 2015 Apr 10.

Abstract

Twin data are commonly used for studying complex psychiatric disorders, and mixed effects models are one of the most popular tools for modeling dependence structures between twin pairs. However, for eQTL (expression quantitative trait loci) data where associations between thousands of transcripts and millions of single nucleotide polymorphisms need to be tested, mixed effects models are computationally inefficient and often impractical. In this paper, we propose a fast eQTL analysis approach for twin eQTL data where we randomly split twin pairs into two groups, so that within each group the samples are unrelated, and we then apply a multiple linear regression analysis separately to each group. A score statistic that automatically adjusts the (hidden) correlation between the two groups is constructed for combining the results from the two groups. The proposed method has well-controlled type I error. Compared to mixed effects models, the proposed method has similar power but drastically improved computational efficiency. We demonstrate the computational advantage of the proposed method via extensive simulations. The proposed method is also applied to a large twin eQTL data from the Netherlands Twin Register.

摘要

双胞胎数据常用于研究复杂的精神疾病,混合效应模型是模拟双胞胎对之间依赖结构最常用的工具之一。然而,对于需要测试数千个转录本与数百万个单核苷酸多态性之间关联的eQTL(表达数量性状位点)数据,混合效应模型在计算上效率低下,且往往不切实际。在本文中,我们提出了一种用于双胞胎eQTL数据的快速eQTL分析方法,即我们将双胞胎对随机分成两组,使得每组内的样本不相关,然后分别对每组应用多元线性回归分析。构建了一个自动调整两组之间(隐藏)相关性的得分统计量,用于合并两组的结果。所提出的方法具有良好控制的I型错误。与混合效应模型相比,所提出的方法具有相似的功效,但计算效率大幅提高。我们通过广泛的模拟证明了所提出方法的计算优势。所提出的方法也应用于来自荷兰双胞胎登记处的大型双胞胎eQTL数据。

相似文献

1
Fast eQTL Analysis for Twin Studies.
Genet Epidemiol. 2015 Jul;39(5):357-65. doi: 10.1002/gepi.21900. Epub 2015 Apr 10.
2
TwinEQTL: ultrafast and powerful association analysis for eQTL and GWAS in twin studies.
Genetics. 2022 Jul 30;221(4). doi: 10.1093/genetics/iyac088.
3
Matrix eQTL: ultra fast eQTL analysis via large matrix operations.
Bioinformatics. 2012 May 15;28(10):1353-8. doi: 10.1093/bioinformatics/bts163. Epub 2012 Apr 6.
4
Effective SNP ranking improves the performance of eQTL mapping.
Genet Epidemiol. 2020 Sep;44(6):611-619. doi: 10.1002/gepi.22293. Epub 2020 Mar 26.
5
An independent component analysis confounding factor correction framework for identifying broad impact expression quantitative trait loci.
PLoS Comput Biol. 2017 May 15;13(5):e1005537. doi: 10.1371/journal.pcbi.1005537. eCollection 2017 May.
6
Fast and robust group-wise eQTL mapping using sparse graphical models.
BMC Bioinformatics. 2015 Jan 16;16:2. doi: 10.1186/s12859-014-0421-z.
7
Sparse regression models for unraveling group and individual associations in eQTL mapping.
BMC Bioinformatics. 2016 Mar 22;17:136. doi: 10.1186/s12859-016-0986-9.
8
A statistical framework for eQTL mapping using RNA-seq data.
Biometrics. 2012 Mar;68(1):1-11. doi: 10.1111/j.1541-0420.2011.01654.x. Epub 2011 Aug 12.
10
Inference of SNP-gene regulatory networks by integrating gene expressions and genetic perturbations.
Biomed Res Int. 2014;2014:629697. doi: 10.1155/2014/629697. Epub 2014 Jun 9.

引用本文的文献

1
TwinEQTL: ultrafast and powerful association analysis for eQTL and GWAS in twin studies.
Genetics. 2022 Jul 30;221(4). doi: 10.1093/genetics/iyac088.
3
Functional Architectures of Local and Distal Regulation of Gene Expression in Multiple Human Tissues.
Am J Hum Genet. 2017 Apr 6;100(4):605-616. doi: 10.1016/j.ajhg.2017.03.002. Epub 2017 Mar 23.

本文引用的文献

1
Heritability and genomics of gene expression in peripheral blood.
Nat Genet. 2014 May;46(5):430-7. doi: 10.1038/ng.2951. Epub 2014 Apr 13.
4
Genome-wide association studies identify four ER negative-specific breast cancer risk loci.
Nat Genet. 2013 Apr;45(4):392-8, 398e1-2. doi: 10.1038/ng.2561.
5
OpenMx: An Open Source Extended Structural Equation Modeling Framework.
Psychometrika. 2011 Apr 1;76(2):306-317. doi: 10.1007/s11336-010-9200-6.
7
Matrix eQTL: ultra fast eQTL analysis via large matrix operations.
Bioinformatics. 2012 May 15;28(10):1353-8. doi: 10.1093/bioinformatics/bts163. Epub 2012 Apr 6.
8
Integration of GWAS SNPs and tissue specific expression profiling reveal discrete eQTLs for human traits in blood and brain.
Neurobiol Dis. 2012 Jul;47(1):20-8. doi: 10.1016/j.nbd.2012.03.020. Epub 2012 Mar 12.
9
The association between fat and lean mass and bone mineral density: the Healthy Twin Study.
Bone. 2012 Apr;50(4):1006-11. doi: 10.1016/j.bone.2012.01.015. Epub 2012 Jan 28.
10
Computational tools for discovery and interpretation of expression quantitative trait loci.
Pharmacogenomics. 2012 Feb;13(3):343-52. doi: 10.2217/pgs.11.185.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验