Suppr超能文献

电偏置锥形纳米孔中的有源电流门控

Active current gating in electrically biased conical nanopores.

作者信息

Bearden Samuel, Simpanen Erik, Zhang Guigen

机构信息

Department of Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, SC 29634-0905, USA.

出版信息

Nanotechnology. 2015 May 8;26(18):185502. doi: 10.1088/0957-4484/26/18/185502. Epub 2015 Apr 13.

Abstract

We observed that the ionic current through a gold/silicon nitride (Si3N4) nanopore could be modulated and gated by electrically biasing the gold layer. Rather than employing chemical modification to alter device behavior, we achieved control of conductance directly by electrically biasing the gold portion of the nanopore. By stepping through a range of bias potentials under a constant trans-pore electric field, we observed a gating phenomenon in the trans-pore current response in a variety of solutions including potassium chloride (KCl), sodium chloride (NaCl), and potassium iodide (KI). A computational model with a conical nanopore was developed to examine the effect of the Gouy-Chapman-Stern electrical double layer along with nanopore geometry, work function potentials, and applied electrical bias on the ionic current. The numerical results indicated that the observed modulation and gating behavior was due to dynamic reorganization of the electrical double layer in response to changes in the electrical bias. Specifically, in the conducting state, the nanopore conductance (both numerical and experimental) is linearly proportional to the applied bias due to accumulation of charge in the diffuse layer. The gating effect occurs due to the asymmetric charge distribution in the fluid induced by the distribution of potentials at the nanopore surface. Time dependent changes in current due to restructuring of the electrical double layer occur when the electrostatic bias is instantaneously changed. The nanopore device demonstrates direct external control over nanopore behavior via modulation of the electrical double layer by electrostatic biasing.

摘要

我们观察到,通过对金层施加电偏压,可以调制和控制通过金/氮化硅(Si3N4)纳米孔的离子电流。我们没有采用化学修饰来改变器件行为,而是通过对纳米孔的金部分施加电偏压直接实现了对电导的控制。在恒定的跨孔电场下,通过逐步改变一系列偏置电位,我们在包括氯化钾(KCl)、氯化钠(NaCl)和碘化钾(KI)在内的多种溶液中观察到了跨孔电流响应中的门控现象。开发了一个具有锥形纳米孔的计算模型,以研究古依-查普曼-斯特恩(Gouy-Chapman-Stern)电双层的影响,以及纳米孔几何形状、功函数电位和施加的电偏压对离子电流的影响。数值结果表明,观察到的调制和门控行为是由于电双层响应电偏压变化而发生的动态重组。具体而言,在导通状态下,由于扩散层中电荷的积累,纳米孔电导(数值和实验结果)与施加的偏压呈线性比例关系。门控效应是由于纳米孔表面电位分布引起的流体中不对称电荷分布而产生的。当静电偏压瞬间改变时,由于电双层的重组会出现电流随时间的变化。纳米孔器件通过静电偏压对电双层的调制,展示了对纳米孔行为的直接外部控制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验