Suppr超能文献

在分析重复二元反应时是否对基线进行调整?以研究结束时的治疗比较为关注点的完整数据情况。

To adjust or not to adjust for baseline when analyzing repeated binary responses? The case of complete data when treatment comparison at study end is of interest.

作者信息

Jiang Honghua, Kulkarni Pandurang M, Mallinckrodt Craig H, Shurzinske Linda, Molenberghs Geert, Lipkovich Ilya

机构信息

Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA.

Eli Lilly and Company, Global Statistical Science, Indianapolis, IN, USA.

出版信息

Pharm Stat. 2015 May-Jun;14(3):262-71. doi: 10.1002/pst.1682. Epub 2015 Apr 10.

Abstract

The benefits of adjusting for baseline covariates are not as straightforward with repeated binary responses as with continuous response variables. Therefore, in this study, we compared different methods for analyzing repeated binary data through simulations when the outcome at the study endpoint is of interest. Methods compared included chi-square, Fisher's exact test, covariate adjusted/unadjusted logistic regression (Adj.logit/Unadj.logit), covariate adjusted/unadjusted generalized estimating equations (Adj.GEE/Unadj.GEE), covariate adjusted/unadjusted generalized linear mixed model (Adj.GLMM/Unadj.GLMM). All these methods preserved the type I error close to the nominal level. Covariate adjusted methods improved power compared with the unadjusted methods because of the increased treatment effect estimates, especially when the correlation between the baseline and outcome was strong, even though there was an apparent increase in standard errors. Results of the Chi-squared test were identical to those for the unadjusted logistic regression. Fisher's exact test was the most conservative test regarding the type I error rate and also with the lowest power. Without missing data, there was no gain in using a repeated measures approach over a simple logistic regression at the final time point. Analysis of results from five phase III diabetes trials of the same compound was consistent with the simulation findings. Therefore, covariate adjusted analysis is recommended for repeated binary data when the study endpoint is of interest.

摘要

对于重复二元反应,调整基线协变量的益处不像连续反应变量那样直接明了。因此,在本研究中,当研究终点的结果受到关注时,我们通过模拟比较了分析重复二元数据的不同方法。所比较的方法包括卡方检验、Fisher精确检验、协变量调整/未调整的逻辑回归(调整逻辑回归/未调整逻辑回归)、协变量调整/未调整的广义估计方程(调整广义估计方程/未调整广义估计方程)、协变量调整/未调整的广义线性混合模型(调整广义线性混合模型/未调整广义线性混合模型)。所有这些方法都将I型错误保持在接近名义水平。由于治疗效果估计值增加,协变量调整方法与未调整方法相比提高了检验效能,尤其是当基线与结果之间的相关性很强时,尽管标准误明显增加。卡方检验的结果与未调整逻辑回归的结果相同。Fisher精确检验在I型错误率方面是最保守的检验,且检验效能也最低。在没有缺失数据的情况下,在最后时间点使用重复测量方法相对于简单逻辑回归并无优势。对同一化合物的五项III期糖尿病试验结果的分析与模拟结果一致。因此,当研究终点受到关注时,对于重复二元数据建议采用协变量调整分析。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验