Suppr超能文献

整群随机试验中协变量失衡的后果有多大:一项针对连续结局和整群水平二元协变量的模拟研究

How large are the consequences of covariate imbalance in cluster randomized trials: a simulation study with a continuous outcome and a binary covariate at the cluster level.

作者信息

Moerbeek Mirjam, van Schie Sander

机构信息

Department of Methodology and Statistics, Utrecht University, P.O. Box 80140, 3508 TC, Utrecht, The Netherlands.

出版信息

BMC Med Res Methodol. 2016 Jul 11;16:79. doi: 10.1186/s12874-016-0182-7.

Abstract

BACKGROUND

The number of clusters in a cluster randomized trial is often low. It is therefore likely random assignment of clusters to treatment conditions results in covariate imbalance. There are no studies that quantify the consequences of covariate imbalance in cluster randomized trials on parameter and standard error bias and on power to detect treatment effects.

METHODS

The consequences of covariance imbalance in unadjusted and adjusted linear mixed models are investigated by means of a simulation study. The factors in this study are the degree of imbalance, the covariate effect size, the cluster size and the intraclass correlation coefficient. The covariate is binary and measured at the cluster level; the outcome is continuous and measured at the individual level.

RESULTS

The results show covariate imbalance results in negligible parameter bias and small standard error bias in adjusted linear mixed models. Ignoring the possibility of covariate imbalance while calculating the sample size at the cluster level may result in a loss in power of at most 25 % in the adjusted linear mixed model. The results are more severe for the unadjusted linear mixed model: parameter biases up to 100 % and standard error biases up to 200 % may be observed. Power levels based on the unadjusted linear mixed model are often too low. The consequences are most severe for large clusters and/or small intraclass correlation coefficients since then the required number of clusters to achieve a desired power level is smallest.

CONCLUSIONS

The possibility of covariate imbalance should be taken into account while calculating the sample size of a cluster randomized trial. Otherwise more sophisticated methods to randomize clusters to treatments should be used, such as stratification or balance algorithms. All relevant covariates should be carefully identified, be actually measured and included in the statistical model to avoid severe levels of parameter and standard error bias and insufficient power levels.

摘要

背景

整群随机试验中的群组数量通常较少。因此,将群组随机分配至治疗条件可能会导致协变量失衡。尚无研究对整群随机试验中协变量失衡对参数和标准误差偏差以及检测治疗效果的效能的影响进行量化。

方法

通过模拟研究调查未调整和调整后的线性混合模型中协方差失衡的影响。本研究中的因素包括失衡程度、协变量效应大小、群组大小和组内相关系数。协变量为二元变量,在群组层面进行测量;结局为连续变量,在个体层面进行测量。

结果

结果表明,在调整后的线性混合模型中,协变量失衡导致的参数偏差可忽略不计,标准误差偏差较小。在群组层面计算样本量时忽略协变量失衡的可能性,可能会导致调整后的线性混合模型中的效能损失至多25%。对于未调整的线性混合模型,结果更为严重:可能会观察到高达100%的参数偏差和高达200%的标准误差偏差。基于未调整的线性混合模型的效能水平通常过低。对于大型群组和/或较小的组内相关系数,后果最为严重,因为此时达到所需效能水平所需的群组数量最少。

结论

在计算整群随机试验的样本量时,应考虑协变量失衡的可能性。否则,应使用更复杂的方法将群组随机分配至治疗组,如分层或平衡算法。应仔细识别所有相关协变量,实际进行测量并纳入统计模型,以避免出现严重的参数和标准误差偏差以及效能不足的情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/398a/4939594/7b6e674ed819/12874_2016_182_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验