Suppr超能文献

戒烟途径:重复测量潜在类别分析。

Paths to tobacco abstinence: A repeated-measures latent class analysis.

作者信息

McCarthy Danielle E, Ebssa Lemma, Witkiewitz Katie, Shiffman Saul

机构信息

Department of Psychology, Rutgers, The State University of New Jersey.

Institute for Health, Health Care Policy, and Aging Research, Rutgers, The State University of New Jersey.

出版信息

J Consult Clin Psychol. 2015 Aug;83(4):696-708. doi: 10.1037/ccp0000017. Epub 2015 Apr 13.

Abstract

OBJECTIVE

Knowledge of smoking change processes may be enhanced by identifying pathways to stable abstinence. We sought to identify latent classes of smokers based on their day-to-day smoking status in the first weeks of a cessation attempt. We examined treatment effects on class membership and compared classes on baseline individual differences and 6-month abstinence rates.

METHOD

In this secondary analysis of a double-blind randomized placebo-controlled clinical trial (N = 1,433) of 5 smoking cessation pharmacotherapies (nicotine patch, nicotine lozenge, bupropion SR, patch and lozenge, or bupropion SR and lozenge), we conducted repeated-measures latent class analysis of daily smoking status (any smoking vs. none) for the first 27 days of a quit attempt. Treatment and covariate relations with latent class membership were examined. Distal outcome analysis compared confirmed 6-month abstinence rates among the latent classes.

RESULTS

A 5-class solution was selected. Three-quarters of smokers were in stable smoking or abstinent classes, but 25% were in classes with unstable abstinence probabilities over time. Active treatment (compared to placebo), and particularly the patch and lozenge combination, promoted early quitting. Latent classes differed in 6-month abstinence rates and on several baseline variables, including nicotine dependence, quitting history, self-efficacy, sleep disturbance, and minority status.

CONCLUSIONS

Repeated-measures latent class analysis identified latent classes of smoking change patterns affected by treatment, related to known risk factors, and predictive of distal outcomes. Tracking behavior early in a change attempt may identify prognostic patterns of change and facilitate adaptive treatment planning.

摘要

目的

通过确定实现稳定戒烟的途径,可能会增进对吸烟变化过程的了解。我们试图根据戒烟尝试最初几周的日常吸烟状况,确定吸烟者的潜在类别。我们研究了治疗对类别归属的影响,并比较了不同类别在基线个体差异和6个月戒烟率方面的情况。

方法

在一项对5种戒烟药物疗法(尼古丁贴片、尼古丁含片、安非他酮缓释片、贴片和含片,或安非他酮缓释片和含片)进行的双盲随机安慰剂对照临床试验(N = 1433)的二次分析中,我们对戒烟尝试的前27天的日常吸烟状况(吸烟与否)进行了重复测量潜在类别分析。研究了治疗及协变量与潜在类别归属的关系。远期结果分析比较了各潜在类别中确认的6个月戒烟率。

结果

选择了一个5类别解决方案。四分之三的吸烟者属于稳定吸烟或已戒烟类别,但25%的吸烟者所属类别随着时间推移戒烟概率不稳定。积极治疗(与安慰剂相比),尤其是贴片和含片联合使用,能促进早期戒烟。潜在类别在6个月戒烟率以及几个基线变量上存在差异,这些变量包括尼古丁依赖、戒烟史、自我效能感、睡眠障碍和少数族裔身份。

结论

重复测量潜在类别分析确定了受治疗影响、与已知风险因素相关且可预测远期结果的吸烟变化模式的潜在类别。在改变尝试的早期跟踪行为,可能会识别出变化的预后模式,并有助于制定适应性治疗计划。

相似文献

1
Paths to tobacco abstinence: A repeated-measures latent class analysis.戒烟途径:重复测量潜在类别分析。
J Consult Clin Psychol. 2015 Aug;83(4):696-708. doi: 10.1037/ccp0000017. Epub 2015 Apr 13.

引用本文的文献

4
Antidepressants for smoking cessation.抗抑郁药戒烟。
Cochrane Database Syst Rev. 2023 May 24;5(5):CD000031. doi: 10.1002/14651858.CD000031.pub6.
7
Antidepressants for smoking cessation.用于戒烟的抗抑郁药。
Cochrane Database Syst Rev. 2020 Apr 22;4(4):CD000031. doi: 10.1002/14651858.CD000031.pub5.

本文引用的文献

3
Natural history of attempts to stop smoking.戒烟尝试的自然史。
Nicotine Tob Res. 2014 Sep;16(9):1190-8. doi: 10.1093/ntr/ntu052. Epub 2014 Apr 9.
6
Pharmacological interventions for smoking cessation: an overview and network meta-analysis.戒烟的药物干预:综述与网状Meta分析
Cochrane Database Syst Rev. 2013 May 31;2013(5):CD009329. doi: 10.1002/14651858.CD009329.pub2.
9
Combined pharmacotherapy and behavioural interventions for smoking cessation.联合药物治疗与行为干预以戒烟。
Cochrane Database Syst Rev. 2012 Oct 17;10:CD008286. doi: 10.1002/14651858.CD008286.pub2.
10
The natural history of efforts to stop smoking: a prospective cohort study.戒烟努力的自然史:一项前瞻性队列研究。
Drug Alcohol Depend. 2013 Feb 1;128(1-2):171-4. doi: 10.1016/j.drugalcdep.2012.08.010. Epub 2012 Aug 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验