Suppr超能文献

TetR 型调控因子 PaaR 通过影响螺旋链霉菌中普那霉素 I 生物合成的前体供应参与其调控。

Involvement of the TetR-Type Regulator PaaR in the Regulation of Pristinamycin I Biosynthesis through an Effect on Precursor Supply in Streptomyces pristinaespiralis.

作者信息

Zhao Yawei, Feng Rongrong, Zheng Guosong, Tian Jinzhong, Ruan Lijun, Ge Mei, Jiang Weihong, Lu Yinhua

机构信息

Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China.

Shanghai Laiyi Center for Biopharmaceuticals R&D, Shanghai, People's Republic of China.

出版信息

J Bacteriol. 2015 Jun 15;197(12):2062-71. doi: 10.1128/JB.00045-15. Epub 2015 Apr 13.

Abstract

UNLABELLED

Pristinamycin I (PI), produced by Streptomyces pristinaespiralis, is a streptogramin type B antibiotic, which contains two proteinogenic and five aproteinogenic amino acid precursors. PI is coproduced with pristinamycin II (PII), a member of streptogramin type A antibiotics. The PI biosynthetic gene cluster has been cloned and characterized. However, thus far little is understood about the regulation of PI biosynthesis. In this study, a TetR family regulator (encoded by SSDG_03033) was identified as playing a positive role in PI biosynthesis. Its homologue, PaaR, from Corynebacterium glutamicum serves as a transcriptional repressor of the paa genes involved in phenylacetic acid (PAA) catabolism. Herein, we also designated the identified regulator as PaaR. Deletion of paaR led to an approximately 70% decrease in PI production but had little effect on PII biosynthesis. Identical to the function of its homologue from C. glutamicum, PaaR is also involved in the suppression of paa expression. Given that phenylacetyl coenzyme A (PA-CoA) is the common intermediate of the PAA catabolic pathway and the biosynthetic pathway of L-phenylglycine (L-Phg), the last amino acid precursor for PI biosynthesis, we proposed that derepression of the transcription of paa genes in a ΔpaaR mutant possibly diverts more PA-CoA to the PAA catabolic pathway, thereby with less PA-CoA metabolic flux toward L-Phg formation, thus resulting in lower PI titers. This hypothesis was verified by the observations that PI production of a ΔpaaR mutant was restored by L-Phg supplementation as well as by deletion of the paaABCDE operon in the ΔpaaR mutant. Altogether, this study provides new insights into the regulation of PI biosynthesis by S. pristinaespiralis.

IMPORTANCE

A better understanding of the regulation mechanisms for antibiotic biosynthesis will provide valuable clues for Streptomyces strain improvement. Herein, a TetR family regulator PaaR, which serves as the repressor of the transcription of paa genes involved in phenylacetic acid (PAA) catabolism, was identified as playing a positive role in the regulation of pristinamycin I (PI) by affecting the supply of one of seven amino acid precursors, L-phenylglycine, in Streptomyces pristinaespiralis. To our knowledge, this is the first report describing the interplay between PAA catabolism and antibiotic biosynthesis in Streptomyces strains. Considering that the PAA catabolic pathway and its regulation by PaaR are widespread in antibiotic-producing actinomycetes, it could be suggested that PaaR-dependent regulation of antibiotic biosynthesis might commonly exist.

摘要

未标记

由螺旋链霉菌产生的原始霉素I(PI)是一种链阳性菌素B型抗生素,它包含两个蛋白质ogenic和五个非蛋白质ogenic氨基酸前体。PI与链阳性菌素A型抗生素的成员原始霉素II(PII)共同产生。PI生物合成基因簇已被克隆和表征。然而,到目前为止,对PI生物合成的调控了解甚少。在本研究中,一个TetR家族调节因子(由SSDG_03033编码)被鉴定为在PI生物合成中起积极作用。它的同源物,来自谷氨酸棒杆菌的PaaR,作为参与苯乙酸(PAA)分解代谢的paa基因的转录阻遏物。在此,我们也将鉴定出的调节因子命名为PaaR。paaR的缺失导致PI产量下降约70%,但对PII生物合成影响很小。与其来自谷氨酸棒杆菌的同源物的功能相同,PaaR也参与抑制paa的表达。鉴于苯乙酰辅酶A(PA-CoA)是PAA分解代谢途径和PI生物合成的最后一个氨基酸前体L-苯甘氨酸生物合成途径的共同中间体,我们提出,ΔpaaR突变体中paa基因转录的去阻遏可能会使更多的PA-CoA转向PAA分解代谢途径,从而减少向L-苯甘氨酸形成的PA-CoA代谢通量,从而导致较低的PI滴度。这一假设通过以下观察得到验证:通过补充L-苯甘氨酸以及在ΔpaaR突变体中缺失paaABCDE操纵子,恢复了ΔpaaR突变体的PI产量。总之,本研究为螺旋链霉菌对PI生物合成的调控提供了新的见解。

重要性

更好地理解抗生素生物合成的调控机制将为链霉菌菌株的改良提供有价值的线索。在此发现,一个TetR家族调节因子PaaR,它作为参与苯乙酸(PAA)分解代谢的paa基因转录的阻遏物,通过影响螺旋链霉菌中七个氨基酸前体之一L-苯甘氨酸的供应,在原始霉素I(PI)调控中起积极作用。据我们所知,这是第一份描述链霉菌菌株中PAA分解代谢与抗生素生物合成之间相互作用的报告。考虑到PAA分解代谢途径及其由PaaR调控在产抗生素放线菌中广泛存在,可以推测PaaR依赖性抗生素生物合成调控可能普遍存在。

相似文献

引用本文的文献

本文引用的文献

4
Streptogramins - two are better than one!链阳性菌素——两者联用,疗效更佳!
Int J Med Microbiol. 2014 Jan;304(1):44-50. doi: 10.1016/j.ijmm.2013.08.008. Epub 2013 Sep 4.
7
Characterization of the 'pristinamycin supercluster' of Streptomyces pristinaespiralis.链霉菌属中壮观霉素超级簇的特性。
Microb Biotechnol. 2011 Mar;4(2):192-206. doi: 10.1111/j.1751-7915.2010.00213.x. Epub 2010 Oct 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验