Peise J, Lücke B, Pezzé L, Deuretzbacher F, Ertmer W, Arlt J, Smerzi A, Santos L, Klempt C
Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany.
1] QSTAR, Largo Enrico Fermi 2, 50125 Firenze, Italy [2] Istituto Nazionale di Ottica, INO-CNR, Largo Enrico Fermi 2, 50125 Firenze, Italy [3] LENS Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy.
Nat Commun. 2015 Apr 14;6:6811. doi: 10.1038/ncomms7811.
Quantum mechanics predicts that our physical reality is influenced by events that can potentially happen but factually do not occur. Interaction-free measurements (IFMs) exploit this counterintuitive influence to detect the presence of an object without requiring any interaction with it. Here we propose and realize an IFM concept based on an unstable many-particle system. In our experiments, we employ an ultracold gas in an unstable spin configuration, which can undergo a rapid decay. The object-realized by a laser beam-prevents this decay because of the indirect quantum Zeno effect and thus, its presence can be detected without interacting with a single atom. Contrary to existing proposals, our IFM does not require single-particle sources and is only weakly affected by losses and decoherence. We demonstrate confidence levels of 90%, well beyond previous optical experiments.
量子力学预测,我们的物理现实会受到那些可能发生但实际上并未发生的事件的影响。无相互作用测量(IFM)利用这种违反直觉的影响来检测物体的存在,而无需与物体进行任何相互作用。在此,我们提出并实现了一种基于不稳定多粒子系统的无相互作用测量概念。在我们的实验中,我们使用处于不稳定自旋构型的超冷气体,该气体可经历快速衰变。由激光束实现的物体由于间接量子芝诺效应而阻止了这种衰变,因此,无需与单个原子相互作用就能检测到它的存在。与现有方案不同,我们的无相互作用测量不需要单粒子源,并且仅受损失和退相干的微弱影响。我们展示了90%的置信水平,远超之前的光学实验。