Suppr超能文献

人类注意力的分层非线性动力学。

Hierarchical nonlinear dynamics of human attention.

机构信息

BioCircuits Institute, University of California, San Diego, 9500 Gilman Drive #0328, La Jolla, CA 92093-0328, United States.

Grupo de Neurocomputación Biológica, Dpto. de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, 28049 Madrid, Spain.

出版信息

Neurosci Biobehav Rev. 2015 Aug;55:18-35. doi: 10.1016/j.neubiorev.2015.04.001. Epub 2015 Apr 11.

Abstract

Attention is the process of focusing mental resources on a specific cognitive/behavioral task. Such brain dynamics involves different partially overlapping brain functional networks whose interconnections change in time according to the performance stage, and can be stimulus-driven or induced by an intrinsically generated goal. The corresponding activity can be described by different families of spatiotemporal discrete patterns or sequential dynamic modes. Since mental resources are finite, attention modalities compete with each other at all levels of the hierarchy, from perception to decision making and behavior. Cognitive activity is a dynamical process and attention possesses some universal dynamical characteristics. Thus, it is time to apply nonlinear dynamical theory for the description and prediction of hierarchical attentional tasks. Such theory has to include the analyses of attentional control stability, the time cost of attention switching, the finite capacity of informational resources in the brain, and the normal and pathological bifurcations of attention sequential dynamics. In this paper we have integrated today's knowledge, models and results in these directions.

摘要

注意是将心理资源集中在特定认知/行为任务上的过程。这种大脑动力学涉及不同的部分重叠的脑功能网络,它们的连接根据表现阶段而变化,并可以由刺激驱动或由内在产生的目标诱导。相应的活动可以用不同的时空离散模式或序列动态模式家族来描述。由于心理资源是有限的,因此注意模式在从感知到决策和行为的层次结构的各个级别上相互竞争。认知活动是一个动态过程,注意具有一些普遍的动态特征。因此,现在是时候应用非线性动力理论来描述和预测分层注意任务了。该理论必须包括注意力控制稳定性、注意力切换的时间成本、大脑中信息资源的有限容量以及注意力序列动力学的正常和病理分岔的分析。在本文中,我们整合了这些方向的当今知识、模型和结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验