Rabinovich Mikhail I, Varona Pablo
BioCircuits Institute, University of California, San Diego, La Jolla, CA, United States.
Grupo de Neurocomputación Biológica, Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, Spain.
Front Comput Neurosci. 2018 Sep 7;12:73. doi: 10.3389/fncom.2018.00073. eCollection 2018.
Discrete sequential information coding is a key mechanism that transforms complex cognitive brain activity into a low-dimensional dynamical process based on the sequential switching among finite numbers of patterns. The storage size of the corresponding process is large because of the permutation capacity as a function of control signals in ensembles of these patterns. Extracting low-dimensional functional dynamics from multiple large-scale neural populations is a central problem both in neuro- and cognitive- sciences. Experimental results in the last decade represent a solid base for the creation of low-dimensional models of different cognitive functions and allow moving toward a dynamical theory of consciousness. We discuss here a methodology to build simple kinetic equations that can be the mathematical skeleton of this theory. Models of the corresponding discrete information processing can be designed using the following dynamical principles: (i) clusterization of the neural activity in space and time and formation of information patterns; (ii) robustness of the sequential dynamics based on heteroclinic chains of metastable clusters; and (iii) sensitivity of such sequential dynamics to intrinsic and external informational signals. We analyze sequential discrete coding based on winnerless competition low-frequency dynamics. Under such dynamics, entrainment, and heteroclinic coordination leads to a large variety of coding regimes that are invariant in time.
离散序列信息编码是一种关键机制,它基于有限数量模式之间的序列切换,将复杂的认知大脑活动转化为低维动力学过程。由于这些模式集合中作为控制信号函数的排列能力,相应过程的存储大小很大。从多个大规模神经群体中提取低维功能动力学是神经科学和认知科学中的核心问题。过去十年的实验结果为创建不同认知功能的低维模型奠定了坚实基础,并有助于迈向意识动力学理论。我们在此讨论一种构建简单动力学方程的方法,这些方程可以成为该理论的数学框架。可以使用以下动力学原理设计相应离散信息处理的模型:(i)神经活动在空间和时间上的聚类以及信息模式的形成;(ii)基于亚稳聚类的异宿链的序列动力学的稳健性;(iii)这种序列动力学对内在和外部信息信号的敏感性。我们分析基于无胜者竞争低频动力学的序列离散编码。在这种动力学下,同步和异宿协调导致了多种随时间不变的编码机制。