Suppr超能文献

通过具有坍缩样本空间的历史依赖过程理解标度。

Understanding scaling through history-dependent processes with collapsing sample space.

作者信息

Corominas-Murtra Bernat, Hanel Rudolf, Thurner Stefan

机构信息

Section for Science of Complex Systems, Medical University of Vienna, A-1090 Vienna, Austria;

Section for Science of Complex Systems, Medical University of Vienna, A-1090 Vienna, Austria; Santa Fe Institute, Santa Fe, NM 87501; and International Institute for Applied Systems Analysis, A-2361 Laxenburg, Austria

出版信息

Proc Natl Acad Sci U S A. 2015 Apr 28;112(17):5348-53. doi: 10.1073/pnas.1420946112. Epub 2015 Apr 13.

Abstract

History-dependent processes are ubiquitous in natural and social systems. Many such stochastic processes, especially those that are associated with complex systems, become more constrained as they unfold, meaning that their sample space, or their set of possible outcomes, reduces as they age. We demonstrate that these sample-space-reducing (SSR) processes necessarily lead to Zipf's law in the rank distributions of their outcomes. We show that by adding noise to SSR processes the corresponding rank distributions remain exact power laws, p(x) ~ x(-λ), where the exponent directly corresponds to the mixing ratio of the SSR process and noise. This allows us to give a precise meaning to the scaling exponent in terms of the degree to which a given process reduces its sample space as it unfolds. Noisy SSR processes further allow us to explain a wide range of scaling exponents in frequency distributions ranging from α = 2 to ∞. We discuss several applications showing how SSR processes can be used to understand Zipf's law in word frequencies, and how they are related to diffusion processes in directed networks, or aging processes such as in fragmentation processes. SSR processes provide a new alternative to understand the origin of scaling in complex systems without the recourse to multiplicative, preferential, or self-organized critical processes.

摘要

历史依赖过程在自然和社会系统中普遍存在。许多这样的随机过程,尤其是那些与复杂系统相关的过程,在展开过程中受到的限制越来越多,这意味着它们的样本空间,即可能结果的集合,会随着时间的推移而缩小。我们证明,这些样本空间缩小(SSR)过程必然会导致其结果的秩分布遵循齐普夫定律。我们表明,通过向SSR过程添加噪声,相应的秩分布仍然是精确的幂律,p(x) ~ x^(-λ),其中指数直接对应于SSR过程和噪声的混合比。这使我们能够根据给定过程在展开时缩小其样本空间的程度,赋予缩放指数一个精确的含义。有噪声的SSR过程还使我们能够解释频率分布中从α = 2到∞的广泛缩放指数。我们讨论了几个应用,展示了SSR过程如何用于理解词频中的齐普夫定律,以及它们与有向网络中的扩散过程或诸如碎片化过程中的老化过程有何关系。SSR过程为理解复杂系统中缩放的起源提供了一种新的替代方法,而无需借助乘法、优先或自组织临界过程。

相似文献

1
Understanding scaling through history-dependent processes with collapsing sample space.通过具有坍缩样本空间的历史依赖过程理解标度。
Proc Natl Acad Sci U S A. 2015 Apr 28;112(17):5348-53. doi: 10.1073/pnas.1420946112. Epub 2015 Apr 13.
6
Stochastic model of Zipf's law and the universality of the power-law exponent.齐普夫定律的随机模型与幂律指数的普遍性
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Apr;89(4):042115. doi: 10.1103/PhysRevE.89.042115. Epub 2014 Apr 8.
7
Zipf's Law for Word Frequencies: Word Forms versus Lemmas in Long Texts.词频的齐普夫定律:长文本中的词形与词元
PLoS One. 2015 Jul 9;10(7):e0129031. doi: 10.1371/journal.pone.0129031. eCollection 2015.

引用本文的文献

3
A master equation for power laws.幂律的主方程。
R Soc Open Sci. 2022 Dec 7;9(12):220531. doi: 10.1098/rsos.220531. eCollection 2022 Dec.
5
Taylor's Law in Innovation Processes.创新过程中的泰勒定律。
Entropy (Basel). 2020 May 19;22(5):573. doi: 10.3390/e22050573.
10

本文引用的文献

1
A scaling law for random walks on networks.网络上随机游走的标度律。
Nat Commun. 2014 Oct 14;5:5121. doi: 10.1038/ncomms6121.
4
Emergence of Zipf's law in the evolution of communication.齐普夫定律在通信演化中的出现。
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Mar;83(3 Pt 2):036115. doi: 10.1103/PhysRevE.83.036115. Epub 2011 Mar 28.
5
Universality of Zipf's law.齐普夫定律的普遍性。
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jul;82(1 Pt 1):011102. doi: 10.1103/PhysRevE.82.011102. Epub 2010 Jul 1.
6
NETWORKS OF SCIENTIFIC PAPERS.科学论文网络
Science. 1965 Jul 30;149(3683):510-5. doi: 10.1126/science.149.3683.510.
9
Zipf distribution of U.S. firm sizes.美国公司规模的齐普夫分布。
Science. 2001 Sep 7;293(5536):1818-20. doi: 10.1126/science.1062081.
10
Scaling features of noncoding DNA.非编码DNA的缩放特征。
Physica A. 1999;273(1-2):1-18. doi: 10.1016/s0378-4371(99)00407-0.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验