Tria Francesca, Crimaldi Irene, Aletti Giacomo, Servedio Vito D P
Physics Department, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
IMT School for Advanced Studies Lucca, Piazza San Ponziano 6, 55100 Lucca, Italy.
Entropy (Basel). 2020 May 19;22(5):573. doi: 10.3390/e22050573.
Taylor's law quantifies the scaling properties of the fluctuations of the number of innovations occurring in open systems. Urn-based modeling schemes have already proven to be effective in modeling this complex behaviour. Here, we present analytical estimations of Taylor's law exponents in such models, by leveraging on their representation in terms of triangular urn models. We also highlight the correspondence of these models with Poisson-Dirichlet processes and demonstrate how a non-trivial Taylor's law exponent is a kind of universal feature in systems related to human activities. We base this result on the analysis of four collections of data generated by human activity: (i) written language (from a Gutenberg corpus); (ii) an online music website (Last.fm); (iii) Twitter hashtags; (iv) an online collaborative tagging system (Del.icio.us). While Taylor's law observed in the last two datasets agrees with the plain model predictions, we need to introduce a generalization to fully characterize the behaviour of the first two datasets, where temporal correlations are possibly more relevant. We suggest that Taylor's law is a fundamental complement to Zipf's and Heaps' laws in unveiling the complex dynamical processes underlying the evolution of systems featuring innovation.
泰勒定律量化了开放系统中创新数量波动的标度性质。基于瓮模型的建模方案已被证明在模拟这种复杂行为方面是有效的。在此,我们通过利用它们在三角瓮模型方面的表示,给出此类模型中泰勒定律指数的解析估计。我们还强调了这些模型与泊松 - 狄利克雷过程的对应关系,并展示了非平凡的泰勒定律指数是与人类活动相关系统中的一种普遍特征。我们基于对由人类活动生成的四组数据的分析得出这一结果:(i)书面语言(来自古登堡语料库);(ii)一个在线音乐网站(Last.fm);(iii)推特话题标签;(iv)一个在线协作标签系统(美味书签,Del.icio.us)。虽然在后两个数据集中观察到的泰勒定律与简单模型预测相符,但我们需要引入一种推广来全面描述前两个数据集的行为,在前两个数据集中时间相关性可能更重要。我们认为泰勒定律是齐普夫定律和希普定律的一个基本补充,有助于揭示具有创新特征的系统演化背后的复杂动态过程。