Lopez Rita, Sarg Bettina, Lindner Herbert, Bartolomé Salvador, Ponte Inma, Suau Pedro, Roque Alicia
Departamento de Bioquímica y Biología Molecular, Facultad de Biociencias, Universidad Autónoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
Division of Clinical Biochemistry, Biocenter, Innsbruck Medical University, A-6020, Innsbruck, Austria.
Nucleic Acids Res. 2015 May 19;43(9):4463-76. doi: 10.1093/nar/gkv304. Epub 2015 Apr 13.
Linker histones are involved in chromatin higher-order structure and gene regulation. We have successfully achieved partial phosphorylation of linker histones in chicken erythrocyte soluble chromatin with CDK2, as indicated by HPCE, MALDI-TOF and Tandem MS. We have studied the effects of linker histone partial phosphorylation on secondary structure and chromatin condensation. Infrared spectroscopy analysis showed a gradual increase of β-structure in the phosphorylated samples, concomitant to a decrease in α-helix/turns, with increasing linker histone phosphorylation. This conformational change could act as the first step in the phosphorylation-induced effects on chromatin condensation. A decrease of the sedimentation rate through sucrose gradients of the phosphorylated samples was observed, indicating a global relaxation of the 30-nm fiber following linker histone phosphorylation. Analysis of specific genes, combining nuclease digestion and qPCR, showed that phosphorylated samples were more accessible than unphosphorylated samples, suggesting local chromatin relaxation. Chromatin aggregation was induced by MgCl2 and analyzed by dynamic light scattering (DLS). Phosphorylated chromatin had lower percentages in volume of aggregated molecules and the aggregates had smaller hydrodynamic diameter than unphosphorylated chromatin, indicating that linker histone phosphorylation impaired chromatin aggregation. These findings provide new insights into the effects of linker histone phosphorylation in chromatin condensation.
连接组蛋白参与染色质的高级结构和基因调控。我们已经成功地利用细胞周期蛋白依赖性激酶2(CDK2)实现了鸡红细胞可溶性染色质中连接组蛋白的部分磷酸化,高效毛细管电泳(HPCE)、基质辅助激光解吸电离飞行时间质谱(MALDI-TOF)和串联质谱分析均表明了这一点。我们研究了连接组蛋白部分磷酸化对二级结构和染色质凝聚的影响。红外光谱分析表明,随着连接组蛋白磷酸化程度的增加,磷酸化样品中的β-结构逐渐增加,同时α-螺旋/转角减少。这种构象变化可能是磷酸化诱导染色质凝聚效应的第一步。观察到磷酸化样品通过蔗糖梯度的沉降速率降低,表明连接组蛋白磷酸化后30纳米纤维整体松弛。结合核酸酶消化和定量聚合酶链反应(qPCR)对特定基因的分析表明,磷酸化样品比未磷酸化样品更容易接近,这表明局部染色质松弛。用氯化镁诱导染色质聚集并通过动态光散射(DLS)进行分析。磷酸化染色质中聚集分子的体积百分比更低,且聚集体的流体动力学直径比未磷酸化染色质的小,这表明连接组蛋白磷酸化会损害染色质聚集。这些发现为连接组蛋白磷酸化对染色质凝聚的影响提供了新的见解。