Suppr超能文献

无序连接组蛋白 H1 与核小体颗粒的结合动力学。

Binding Dynamics of Disordered Linker Histone H1 with a Nucleosomal Particle.

机构信息

Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, United States.

Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States.

出版信息

J Mol Biol. 2021 Mar 19;433(6):166881. doi: 10.1016/j.jmb.2021.166881. Epub 2021 Feb 20.

Abstract

Linker histone H1 is an essential regulatory protein for many critical biological processes, such as eukaryotic chromatin packaging and gene expression. Mis-regulation of H1s is commonly observed in tumor cells, where the balance between different H1 subtypes has been shown to alter the cancer phenotype. Consisting of a rigid globular domain and two highly charged terminal domains, H1 can bind to multiple sites on a nucleosomal particle to alter chromatin hierarchical condensation levels. In particular, the disordered H1 amino- and carboxyl-terminal domains (NTD/CTD) are believed to enhance this binding affinity, but their detailed dynamics and functions remain unclear. In this work, we used a coarse-grained computational model, AWSEM-DNA, to simulate the H1.0b-nucleosome complex, namely chromatosome. Our results demonstrate that H1 disordered domains restrict the dynamics and conformation of both globular H1 and linker DNA arms, resulting in a more compact and rigid chromatosome particle. Furthermore, we identified regions of H1 disordered domains that are tightly tethered to DNA near the entry-exit site. Overall, our study elucidates at near-atomic resolution the way the disordered linker histone H1 modulates nucleosome's structural preferences and conformational dynamics.

摘要

连接组蛋白 H1 是许多关键生物过程的必需调节蛋白,如真核染色质包装和基因表达。在肿瘤细胞中经常观察到 H1 的失调,不同 H1 亚型之间的平衡已被证明会改变癌症表型。H1 由刚性的球形结构域和两个带高电荷的末端结构域组成,可与核小体颗粒上的多个位点结合,改变染色质的层次凝聚水平。特别是,无序的 H1 氨基和羧基末端结构域(NTD/CTD)被认为可以增强这种结合亲和力,但它们的详细动力学和功能仍不清楚。在这项工作中,我们使用了一个粗粒计算模型 AWSEM-DNA 来模拟 H1.0b-核小体复合物,即染色质小体。我们的结果表明,H1 的无序结构域限制了球形 H1 和连接 DNA 臂的动力学和构象,导致染色质小体颗粒更加紧凑和刚性。此外,我们还确定了 H1 无序结构域与靠近入口/出口处的 DNA 紧密结合的区域。总的来说,我们的研究以近原子分辨率阐明了无序连接组蛋白 H1 调节核小体结构偏好和构象动力学的方式。

相似文献

1
Binding Dynamics of Disordered Linker Histone H1 with a Nucleosomal Particle.
J Mol Biol. 2021 Mar 19;433(6):166881. doi: 10.1016/j.jmb.2021.166881. Epub 2021 Feb 20.
2
HMGN1 and 2 remodel core and linker histone tail domains within chromatin.
Nucleic Acids Res. 2017 Sep 29;45(17):9917-9930. doi: 10.1093/nar/gkx579.
3
Structure and Dynamics of a 197 bp Nucleosome in Complex with Linker Histone H1.
Mol Cell. 2017 May 4;66(3):384-397.e8. doi: 10.1016/j.molcel.2017.04.012.
4
The Dynamic Influence of Linker Histone Saturation within the Poly-Nucleosome Array.
J Mol Biol. 2021 May 14;433(10):166902. doi: 10.1016/j.jmb.2021.166902. Epub 2021 Mar 2.
5
Breaths, Twists, and Turns of Atomistic Nucleosomes.
J Mol Biol. 2021 Mar 19;433(6):166744. doi: 10.1016/j.jmb.2020.166744. Epub 2020 Dec 10.
6
Protein disorder-to-order transition enhances the nucleosome-binding affinity of H1.
Nucleic Acids Res. 2020 Jun 4;48(10):5318-5331. doi: 10.1093/nar/gkaa285.
7
Structure of an H1-Bound 6-Nucleosome Array Reveals an Untwisted Two-Start Chromatin Fiber Conformation.
Mol Cell. 2018 Dec 6;72(5):902-915.e7. doi: 10.1016/j.molcel.2018.09.027. Epub 2018 Nov 1.
10
Linker DNA Length is a Key to Tri-nucleosome Folding.
J Mol Biol. 2021 Mar 19;433(6):166792. doi: 10.1016/j.jmb.2020.166792. Epub 2020 Dec 29.

引用本文的文献

1
Energy Landscapes and Structural Plasticity of Intrinsically Disordered Histones.
J Chem Inf Model. 2025 Aug 25;65(16):8679-8687. doi: 10.1021/acs.jcim.4c02269. Epub 2025 Aug 6.
2
Linker Histone H1.5 Contributes to Centromere Integrity in Human Cells.
bioRxiv. 2025 Jun 3:2025.06.03.657682. doi: 10.1101/2025.06.03.657682.
4
Epigenetic and biogenetic regulation by polyphenols in prostate cancer in the context of 3P medicine.
EPMA J. 2024 Dec 21;16(1):113-125. doi: 10.1007/s13167-024-00391-3. eCollection 2025 Mar.
5
Regulation of chromatin architecture by protein binding: insights from molecular modeling.
Biophys Rev. 2024 May 9;16(3):331-343. doi: 10.1007/s12551-024-01195-5. eCollection 2024 Jun.
6
From Nucleosomes to Compartments: Physicochemical Interactions Underlying Chromatin Organization.
Annu Rev Biophys. 2024 Jul;53(1):221-245. doi: 10.1146/annurev-biophys-030822-032650. Epub 2024 Jun 28.
7
The role of cryptic ancestral symmetry in histone folding mechanisms across Eukarya and Archaea.
PLoS Comput Biol. 2024 Jan 5;20(1):e1011721. doi: 10.1371/journal.pcbi.1011721. eCollection 2024 Jan.
8
Dynamic action of an intrinsically disordered protein in DNA compaction that induces mycobacterial dormancy.
Nucleic Acids Res. 2024 Jan 25;52(2):816-830. doi: 10.1093/nar/gkad1149.
9
OpenABC enables flexible, simplified, and efficient GPU accelerated simulations of biomolecular condensates.
PLoS Comput Biol. 2023 Sep 11;19(9):e1011442. doi: 10.1371/journal.pcbi.1011442. eCollection 2023 Sep.
10
Combining molecular dynamics simulations and scoring method to computationally model ubiquitylated linker histones in chromatosomes.
PLoS Comput Biol. 2023 Aug 1;19(8):e1010531. doi: 10.1371/journal.pcbi.1010531. eCollection 2023 Aug.

本文引用的文献

1
Bridging chromatin structure and function over a range of experimental spatial and temporal scales by molecular modeling.
Wiley Interdiscip Rev Comput Mol Sci. 2020 Mar-Apr;10(2). doi: 10.1002/wcms.1434. Epub 2019 Aug 6.
2
H1 histones control the epigenetic landscape by local chromatin compaction.
Nature. 2021 Jan;589(7841):293-298. doi: 10.1038/s41586-020-3032-z. Epub 2020 Dec 9.
3
Histone H1 loss drives lymphoma by disrupting 3D chromatin architecture.
Nature. 2021 Jan;589(7841):299-305. doi: 10.1038/s41586-020-3017-y. Epub 2020 Dec 9.
4
Distinct Structures and Dynamics of Chromatosomes with Different Human Linker Histone Isoforms.
Mol Cell. 2021 Jan 7;81(1):166-182.e6. doi: 10.1016/j.molcel.2020.10.038. Epub 2020 Nov 24.
5
Nano-Surveillance: Tracking Individual Molecules in a Sea of Chromatin.
J Mol Biol. 2021 Mar 19;433(6):166720. doi: 10.1016/j.jmb.2020.11.019. Epub 2020 Nov 20.
6
Protein disorder-to-order transition enhances the nucleosome-binding affinity of H1.
Nucleic Acids Res. 2020 Jun 4;48(10):5318-5331. doi: 10.1093/nar/gkaa285.
7
Emergence of chromatin hierarchical loops from protein disorder and nucleosome asymmetry.
Proc Natl Acad Sci U S A. 2020 Mar 31;117(13):7216-7224. doi: 10.1073/pnas.1910044117. Epub 2020 Mar 12.
8
Elucidating the influence of linker histone variants on chromatosome dynamics and energetics.
Nucleic Acids Res. 2020 Apr 17;48(7):3591-3604. doi: 10.1093/nar/gkaa121.
9
Chromatosome Structure and Dynamics from Molecular Simulations.
Annu Rev Phys Chem. 2020 Apr 20;71:101-119. doi: 10.1146/annurev-physchem-071119-040043. Epub 2020 Feb 4.
10
Multiple Binding Configurations of Fis Protein Pairs on DNA: Facilitated Dissociation versus Cooperative Dissociation.
J Am Chem Soc. 2019 Nov 13;141(45):18113-18126. doi: 10.1021/jacs.9b08287. Epub 2019 Nov 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验